IDEAS home Printed from https://ideas.repec.org/a/sae/envira/v31y1999i8p1353-1370.html
   My bibliography  Save this article

Hazard-Rate Modelling of Store-Switching Behaviour

Author

Listed:
  • S Reader

    (Department of Geography, College of Arts and Sciences, University of South Florida, Tampa, FL 33620-8100, USA)

  • F R McNeill

    (SAS Institute (Canada) Inc., Toronto, Ontario, M5J 2T3, Canada)

Abstract

In marketing science, hazard-rate models have shown great promise for investigating the dynamics of brand choice. In this paper, the value of hazard-rate models in geographic research is illustrated by the estimation of proportional hazards models and accelerated failure-time models for a well-defined spatial choice problem. These hazard-rate models produce satisfactory results and provide insights into the state and temporal dependencies of the spatial choice situation being investigated.

Suggested Citation

  • S Reader & F R McNeill, 1999. "Hazard-Rate Modelling of Store-Switching Behaviour," Environment and Planning A, , vol. 31(8), pages 1353-1370, August.
  • Handle: RePEc:sae:envira:v:31:y:1999:i:8:p:1353-1370
    DOI: 10.1068/a311353
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1068/a311353
    Download Restriction: no

    File URL: https://libkey.io/10.1068/a311353?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dipak C. Jain & Naufel J. Vilcassim, 1991. "Investigating Household Purchase Timing Decisions: A Conditional Hazard Function Approach," Marketing Science, INFORMS, vol. 10(1), pages 1-23.
    2. Kristiaan Helsen & David C. Schmittlein, 1993. "Analyzing Duration Times in Marketing: Evidence for the Effectiveness of Hazard Rate Models," Marketing Science, INFORMS, vol. 12(4), pages 395-414.
    3. P T L Popkowski Leszczyc & H J P Timmermans, 1996. "An Unconditional Competing Risk Hazard Model of Consumer Store-Choice Dynamics," Environment and Planning A, , vol. 28(2), pages 357-368, February.
    4. N Wrigley & R Dunn, 1985. "Stochastic Panel-Data Models of Urban Shopping Behaviour: 4. Incorporating Independent Variables into the NBD and Dirichlet Models," Environment and Planning A, , vol. 17(3), pages 319-331, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marion Debruyne & David J. Reibstein, 2005. "Competitor See, Competitor Do: Incumbent Entry in New Market Niches," Marketing Science, INFORMS, vol. 24(1), pages 55-66, December.
    2. Vardit Landsman & Moshe Givon, 2010. "The diffusion of a new service: Combining service consideration and brand choice," Quantitative Marketing and Economics (QME), Springer, vol. 8(1), pages 91-121, March.
    3. Govert Bijwaard, 2010. "Regularity in individual shopping trips: implications for duration models in marketing," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(11), pages 1931-1945.
    4. Jeongwen Chiang & Ching-Fan Chung & Emily Cremers, 2001. "Promotions and the pattern of grocery shopping time," Journal of Applied Statistics, Taylor & Francis Journals, vol. 28(7), pages 801-819.
    5. Andreeva, Galina & Ansell, Jake & Crook, Jonathan, 2007. "Modelling profitability using survival combination scores," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1537-1549, December.
    6. Kwangpil Chang & S. Siddarth & Charles B. Weinberg, 1999. "The Impact of Heterogeneity in Purchase Timing and Price Responsiveness on Estimates of Sticker Shock Effects," Marketing Science, INFORMS, vol. 18(2), pages 178-192.
    7. Marko Sarstedt & Sebastian Scharf & Alexander Thamm & Michael Wolff, 2010. "Die Prognose von Serviceintervallen mit der Hazard-Raten-Analyse – Ergebnisse einer empirischen Studie im Automobilmarkt," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 20(3), pages 269-283, April.
    8. Igari, Ryosuke & Hoshino, Takahiro, 2018. "A Bayesian data combination approach for repeated durations under unobserved missing indicators: Application to interpurchase-timing in marketing," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 150-166.
    9. Namin, Aidin & Dehdashti, Yashar, 2019. "A “hidden†side of consumer grocery shopping choice," Journal of Retailing and Consumer Services, Elsevier, vol. 48(C), pages 16-27.
    10. Bas Donkers & Peter Verhoef & Martijn Jong, 2007. "Modeling CLV: A test of competing models in the insurance industry," Quantitative Marketing and Economics (QME), Springer, vol. 5(2), pages 163-190, June.
    11. Konstantin Kogan & Avi Herbon & Beatrice Venturi, 2020. "Direct marketing of an event under hazards of customer saturation and forgetting," Annals of Operations Research, Springer, vol. 295(1), pages 207-227, December.
    12. Fok, Dennis & Paap, Richard & Franses, Philip Hans, 2012. "Modeling dynamic effects of promotion on interpurchase times," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3055-3069.
    13. Vishal P. Singh & Karsten T. Hansen & Robert C. Blattberg, 2006. "Market Entry and Consumer Behavior: An Investigation of a Wal-Mart Supercenter," Marketing Science, INFORMS, vol. 25(5), pages 457-476, September.
    14. S. Siddarth & Amitava Chattopadhyay, 1998. "To Zap or Not to Zap: A Study of the Determinants of Channel Switching During Commercials," Marketing Science, INFORMS, vol. 17(2), pages 124-138.
    15. Brian W. Gould, 1996. "Consumer Promotion and Purchase Timing: The Case of Cheese," Wisconsin-Madison Agricultural and Applied Economics Staff Papers 396, Wisconsin-Madison Agricultural and Applied Economics Department.
    16. Kumar, Akhilesh & Chinnam, Ratna Babu & Murat, Alper, 2017. "Hazard rate models for core return modeling in auto parts remanufacturing," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 354-361.
    17. Marnik G. Dekimpe & Linda M. Van de Gucht & Dominique M. Hanssens & Keiko I. Powers, 1998. "Long-Run Abstinence After Narcotics Abuse: What Are the Odds?," Management Science, INFORMS, vol. 44(11-Part-1), pages 1478-1492, November.
    18. P. B. Seetharaman, 2004. "The Additive Risk Model for Purchase Timing," Marketing Science, INFORMS, vol. 23(2), pages 234-242, March.
    19. Bijwaard, Govert E. & Franses, Philip Hans & Paap, Richard, 2006. "Modeling Purchases as Repeated Events," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 487-502, October.
    20. Xinxue (Shawn) Qu & Aslan Lotfi & Dipak C. Jain & Zhengrui Jiang, 2022. "Predicting upgrade timing for successive product generations: An exponential‐decay proportional hazard model," Production and Operations Management, Production and Operations Management Society, vol. 31(5), pages 2067-2083, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envira:v:31:y:1999:i:8:p:1353-1370. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.