IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v30y2019i8p1341-1355.html
   My bibliography  Save this article

Lipid extraction from microalgae Chlorella and Synechocystis sp. using glass microparticles as disruption enhancer

Author

Listed:
  • Masoud Derakhshandeh
  • Tahir Atici
  • Umran Tezcan UN

Abstract

In this study, the effect of adding microparticles of glass as a cell disruption enhancer to maximize the extracted lipid from wild-type microalgae Synechocystis and Chlorella sp. has been investigated. A general factorial design approach at different levels has been implemented to evaluate the effectiveness of size and quantity of glass particles for both species. The statistical analysis of variance for the obtained results revealed the significance of the method and defined factors. The recorded extraction efficiency of lipid without addition of particles was 45.02 and 23.19% for Synechocystis and Chlorella sp., respectively. With the addition of particles, the highest recorded value for Chlorella was 34.01% which stands for 46.60% enhancement of extraction efficiency. This was achieved when 40 µm particles in 2.25 mass proportion of particle to dried biomass were used. The addition of particle did not improve the lipid extraction efficiency for the Synechocystis sp. These findings also showed that the conventional gravimetric methods may underestimate the lipid content of microalgae species.

Suggested Citation

  • Masoud Derakhshandeh & Tahir Atici & Umran Tezcan UN, 2019. "Lipid extraction from microalgae Chlorella and Synechocystis sp. using glass microparticles as disruption enhancer," Energy & Environment, , vol. 30(8), pages 1341-1355, December.
  • Handle: RePEc:sae:engenv:v:30:y:2019:i:8:p:1341-1355
    DOI: 10.1177/0958305X19837463
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X19837463
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X19837463?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Park, Ji-Yeon & Lee, Kyubock & Choi, Sun-A & Jeong, Min-Ji & Kim, Bohwa & Lee, Jin-Suk & Oh, You-Kwan, 2015. "Sonication-assisted homogenization system for improved lipid extraction from Chlorella vulgaris," Renewable Energy, Elsevier, vol. 79(C), pages 3-8.
    2. Halim, Ronald & Harun, Razif & Danquah, Michael K. & Webley, Paul A., 2012. "Microalgal cell disruption for biofuel development," Applied Energy, Elsevier, vol. 91(1), pages 116-121.
    3. Mata, Teresa M. & Martins, António A. & Caetano, Nidia. S., 2010. "Microalgae for biodiesel production and other applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 217-232, January.
    4. Ghadiryanfar, Mohsen & Rosentrater, Kurt A. & Keyhani, Alireza & Omid, Mahmoud, 2016. "A review of macroalgae production, with potential applications in biofuels and bioenergy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 473-481.
    5. Choi, Sun-A & Oh, You-Kwan & Jeong, Min-Ji & Kim, Seung Wook & Lee, Jin-Suk & Park, Ji-Yeon, 2014. "Effects of ionic liquid mixtures on lipid extraction from Chlorella vulgaris," Renewable Energy, Elsevier, vol. 65(C), pages 169-174.
    6. Pragya, Namita & Pandey, Krishan K. & Sahoo, P.K., 2013. "A review on harvesting, oil extraction and biofuels production technologies from microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 159-171.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sandeep Panda & Srabani Mishra & Ata Akcil & Mehmet Ali Kucuker, 2021. "Microalgal potential for nutrient-energy-wastewater nexus: Innovations, current trends and future directions," Energy & Environment, , vol. 32(4), pages 604-634, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vasistha, S. & Khanra, A. & Clifford, M. & Rai, M.P., 2021. "Current advances in microalgae harvesting and lipid extraction processes for improved biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    3. Menegazzo, Mariana Lara & Fonseca, Gustavo Graciano, 2019. "Biomass recovery and lipid extraction processes for microalgae biofuels production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 87-107.
    4. Rastogi, Rajesh P. & Pandey, Ashok & Larroche, Christian & Madamwar, Datta, 2018. "Algal Green Energy – R&D and technological perspectives for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2946-2969.
    5. Katiyar, Richa & Gurjar, B.R. & Biswas, Shalini & Pruthi, Vikas & Kumar, Nalin & Kumar, Prashant, 2017. "Microalgae: An emerging source of energy based bio-products and a solution for environmental issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1083-1093.
    6. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    7. Hu, Yulin & Gong, Mengyue & Feng, Shanghuan & Xu, Chunbao (Charles) & Bassi, Amarjeet, 2019. "A review of recent developments of pre-treatment technologies and hydrothermal liquefaction of microalgae for bio-crude oil production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 476-492.
    8. Rizwan, Muhammad & Lee, Jay H. & Gani, Rafiqul, 2015. "Optimal design of microalgae-based biorefinery: Economics, opportunities and challenges," Applied Energy, Elsevier, vol. 150(C), pages 69-79.
    9. Kwak, Minsoo & Kim, Donghyun & Kim, Sungwhan & Lee, Hansol & Chang, Yong Keun, 2020. "Solvent screening and process optimization for high shear-assisted lipid extraction from wet cake of Nannochloropsis sp," Renewable Energy, Elsevier, vol. 149(C), pages 1395-1405.
    10. Chaudry, Sofia & Bahri, Parisa A. & Moheimani, Navid R., 2015. "Pathways of processing of wet microalgae for liquid fuel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1240-1250.
    11. Milano, Jassinnee & Ong, Hwai Chyuan & Masjuki, H.H. & Chong, W.T. & Lam, Man Kee & Loh, Ping Kwan & Vellayan, Viknes, 2016. "Microalgae biofuels as an alternative to fossil fuel for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 180-197.
    12. Ayesha Aslam & Sumaira Rasul & Ali Bahadar & Nazia Hossain & Muhammad Saleem & Sabir Hussain & Lubna Rasool & Hamid Manzoor, 2021. "Effect of Micronutrient and Hormone on Microalgae Growth Assessment for Biofuel Feedstock," Sustainability, MDPI, vol. 13(9), pages 1-20, April.
    13. Jambo, Siti Azmah & Abdulla, Rahmath & Mohd Azhar, Siti Hajar & Marbawi, Hartinie & Gansau, Jualang Azlan & Ravindra, Pogaku, 2016. "A review on third generation bioethanol feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 756-769.
    14. Mathimani, Thangavel & Mallick, Nirupama, 2018. "A comprehensive review on harvesting of microalgae for biodiesel – Key challenges and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1103-1120.
    15. Esveidi Montserrat Valdovinos-García & Juan Barajas-Fernández & María de los Ángeles Olán-Acosta & Moisés Abraham Petriz-Prieto & Adriana Guzmán-López & Micael Gerardo Bravo-Sánchez, 2020. "Techno-Economic Study of CO 2 Capture of a Thermoelectric Plant Using Microalgae ( Chlorella vulgaris ) for Production of Feedstock for Bioenergy," Energies, MDPI, vol. 13(2), pages 1-19, January.
    16. Xia, Ao & Sun, Chihe & Fu, Qian & Liao, Qiang & Huang, Yun & Zhu, Xun & Li, Qing, 2020. "Biofuel production from wet microalgae biomass: Comparison of physicochemical properties and extraction performance," Energy, Elsevier, vol. 212(C).
    17. Chamkalani, A. & Zendehboudi, S. & Rezaei, N. & Hawboldt, K., 2020. "A critical review on life cycle analysis of algae biodiesel: current challenges and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    18. Shah, Syed Hasnain & Raja, Iftikhar Ahmed & Rizwan, Muhammad & Rashid, Naim & Mahmood, Qaisar & Shah, Fayyaz Ali & Pervez, Arshid, 2018. "Potential of microalgal biodiesel production and its sustainability perspectives in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 76-92.
    19. Taelman, Sue Ellen & De Meester, Steven & Van Dijk, Wim & da Silva, Vamilson & Dewulf, Jo, 2015. "Environmental sustainability analysis of a protein-rich livestock feed ingredient in The Netherlands: Microalgae production versus soybean import," Resources, Conservation & Recycling, Elsevier, vol. 101(C), pages 61-72.
    20. Cuevas-Castillo, Gabriela A. & Navarro-Pineda, Freddy S. & Baz Rodríguez, Sergio A. & Sacramento Rivero, Julio C., 2020. "Advances on the processing of microalgal biomass for energy-driven biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:30:y:2019:i:8:p:1341-1355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.