IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i9p5035-d546856.html
   My bibliography  Save this article

Effect of Micronutrient and Hormone on Microalgae Growth Assessment for Biofuel Feedstock

Author

Listed:
  • Ayesha Aslam

    (Institute of Molecular Biology and Biotechnology (IMBB), Bahauddin Zakariya University, Multan 60800, Pakistan)

  • Sumaira Rasul

    (Institute of Molecular Biology and Biotechnology (IMBB), Bahauddin Zakariya University, Multan 60800, Pakistan)

  • Ali Bahadar

    (Department of Chemical and Materials Engineering, King Abdulaziz University, Rabigh 21911, Saudi Arabia)

  • Nazia Hossain

    (School of Engineering, RMIT University, Melbourne, VIC 3001, Australia)

  • Muhammad Saleem

    (Department of Industrial Engineering, King Abdulaziz University, Rabigh 21911, Saudi Arabia)

  • Sabir Hussain

    (Department of Environmental Science and Engineering, Government College University, Faisalabad 38000, Pakistan)

  • Lubna Rasool

    (Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan)

  • Hamid Manzoor

    (Institute of Molecular Biology and Biotechnology (IMBB), Bahauddin Zakariya University, Multan 60800, Pakistan)

Abstract

The individual and combined effects of micronutrients and hormones on freshwater-borne microalgae growth were investigated for biofuel feedstock in this experimental study. Five algal strains of Chlorella sp., Chlorococcum sp., Phormidium sp., Chlorella sp. and Cosmarium sp., AZH, AZS, ZAA1, ZAA2, and ZAA3, respectively, have been investigated. These strains were treated using different concentrations of micronutrients (iron chloride, manganese chloride, and sodium molybdenum oxide) and hormone (salicylic acid). The different treatments’ growth effects were as follows: iron chloride > sodium molybdenum oxide ˃ manganese chloride > salicylic acid. The order of the increases in the number of microalgal strain cells achieved by the application of the micronutrients and hormone was AZH > AZS > ZAA3 > ZAA2 > ZAA1. The combined treatments produced higher growth rates than the individual treatments, with the order of their effects being micronutrients + hormone > all three micronutrients > hormone alone. The increase in the number of microalgal strain cells under combined treatment was ZAA3 > AZH > AZS > ZAA2 and assessed using one-way ANOVA.

Suggested Citation

  • Ayesha Aslam & Sumaira Rasul & Ali Bahadar & Nazia Hossain & Muhammad Saleem & Sabir Hussain & Lubna Rasool & Hamid Manzoor, 2021. "Effect of Micronutrient and Hormone on Microalgae Growth Assessment for Biofuel Feedstock," Sustainability, MDPI, vol. 13(9), pages 1-20, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:5035-:d:546856
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/9/5035/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/9/5035/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Halim, Ronald & Harun, Razif & Danquah, Michael K. & Webley, Paul A., 2012. "Microalgal cell disruption for biofuel development," Applied Energy, Elsevier, vol. 91(1), pages 116-121.
    2. Ankita Juneja & Ruben Michael Ceballos & Ganti S. Murthy, 2013. "Effects of Environmental Factors and Nutrient Availability on the Biochemical Composition of Algae for Biofuels Production: A Review," Energies, MDPI, vol. 6(9), pages 1-32, September.
    3. Mata, Teresa M. & Martins, António A. & Caetano, Nidia. S., 2010. "Microalgae for biodiesel production and other applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 217-232, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    2. Banerjee, Sanjukta & Banerjee, Srijoni & Ghosh, Ananta K. & Das, Debabrata, 2020. "Maneuvering the genetic and metabolic pathway for improving biofuel production in algae: Present status and future prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    3. Mathimani, Thangavel & Mallick, Nirupama, 2018. "A comprehensive review on harvesting of microalgae for biodiesel – Key challenges and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1103-1120.
    4. Zheng, Heshan & Wang, Yu & Li, Shuo & Nagarajan, Dillirani & Varjani, Sunita & Lee, Duu-Jong & Chang, Jo-Shu, 2022. "Recent advances in lutein production from microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    5. Sun, Han & Wu, Tao & Chen, Stephenie Hiu Yuet & Ren, Yuanyuan & Yang, Shufang & Huang, Junchao & Mou, Haijin & Chen, Feng, 2021. "Powerful tools for productivity improvements in microalgal production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    6. Coşgun, Ahmet & Günay, M. Erdem & Yıldırım, Ramazan, 2021. "Exploring the critical factors of algal biomass and lipid production for renewable fuel production by machine learning," Renewable Energy, Elsevier, vol. 163(C), pages 1299-1317.
    7. Menegazzo, Mariana Lara & Fonseca, Gustavo Graciano, 2019. "Biomass recovery and lipid extraction processes for microalgae biofuels production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 87-107.
    8. Saddam H. Al-lwayzy & Talal Yusaf & Raed A. Al-Juboori, 2014. "Biofuels from the Fresh Water Microalgae Chlorella vulgaris (FWM-CV) for Diesel Engines," Energies, MDPI, vol. 7(3), pages 1-23, March.
    9. Zhang, Yi & Kong, Xiaoying & Wang, Zhongming & Sun, Yongming & Zhu, Shunni & Li, Lianhua & Lv, Pengmei, 2018. "Optimization of enzymatic hydrolysis for effective lipid extraction from microalgae Scenedesmus sp," Renewable Energy, Elsevier, vol. 125(C), pages 1049-1057.
    10. D’Alessandro, Emmanuel B. & Antoniosi Filho, Nelson R., 2016. "Concepts and studies on lipid and pigments of microalgae: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 832-841.
    11. Sirajunnisa, Abdul Razack & Surendhiran, Duraiarasan, 2016. "Algae – A quintessential and positive resource of bioethanol production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 248-267.
    12. Islam, Muhammad Aminul & Heimann, Kirsten & Brown, Richard J., 2017. "Microalgae biodiesel: Current status and future needs for engine performance and emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1160-1170.
    13. Wang, Songmei & Zhu, Johnny & Dai, Lingmei & Zhao, Xuebing & Liu, Dehua & Du, Wei, 2016. "A novel process on lipid extraction from microalgae for biodiesel production," Energy, Elsevier, vol. 115(P1), pages 963-968.
    14. Santhakumaran, Prasanthkumar & Kookal, Santhosh Kumar & Mathew, Linu & Ray, Joseph George, 2020. "Experimental evaluation of the culture parameters for optimum yield of lipids and other nutraceutically valuable compounds in Chloroidium saccharophillum (Kruger) comb. Nov," Renewable Energy, Elsevier, vol. 147(P1), pages 1082-1097.
    15. Masoud Derakhshandeh & Tahir Atici & Umran Tezcan UN, 2019. "Lipid extraction from microalgae Chlorella and Synechocystis sp. using glass microparticles as disruption enhancer," Energy & Environment, , vol. 30(8), pages 1341-1355, December.
    16. Lim, Jackson Hwa Keen & Gan, Yong Yang & Ong, Hwai Chyuan & Lau, Beng Fye & Chen, Wei-Hsin & Chong, Cheng Tung & Ling, Tau Chuan & Klemeš, Jiří Jaromír, 2021. "Utilization of microalgae for bio-jet fuel production in the aviation sector: Challenges and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    17. de Jesus, Sérgio S. & Ferreira, Gabriela F. & Moreira, Larissa S. & Filho, Rubens Maciel, 2020. "Biodiesel production from microalgae by direct transesterification using green solvents," Renewable Energy, Elsevier, vol. 160(C), pages 1283-1294.
    18. Behnam Tabatabai & Afua Adusei & Alok Kumar Shrivastava & Prashant Kumar Singh & Viji Sitther, 2020. "Nitrogen Deprivation in Fremyella diplosiphon Augments Lipid Production without Affecting Growth," Energies, MDPI, vol. 13(21), pages 1-12, November.
    19. Visva Bharati Barua & Mariya Munir, 2021. "A Review on Synchronous Microalgal Lipid Enhancement and Wastewater Treatment," Energies, MDPI, vol. 14(22), pages 1-20, November.
    20. Peralta-Ruiz, Y. & González-Delgado, A.-D. & Kafarov, V., 2013. "Evaluation of alternatives for microalgae oil extraction based on exergy analysis," Applied Energy, Elsevier, vol. 101(C), pages 226-236.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:5035-:d:546856. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.