IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v79y2015icp3-8.html
   My bibliography  Save this article

Sonication-assisted homogenization system for improved lipid extraction from Chlorella vulgaris

Author

Listed:
  • Park, Ji-Yeon
  • Lee, Kyubock
  • Choi, Sun-A
  • Jeong, Min-Ji
  • Kim, Bohwa
  • Lee, Jin-Suk
  • Oh, You-Kwan

Abstract

Microalgae, as biodiesel feedstock, are promising renewable energy sources that can be continuously developed into the future. Because recovery of microalgal lipid from dry microalgae incurs high costs, particularly in the dewatering process, wet extraction has been suggested as an attractive alternative approach. In the present study, the feasibility of a sonication-assisted homogenization system for lipid extraction from Chlorella vulgaris was evaluated. To that end, lipid-extraction performance, according to reaction time, cell concentration, and solvent type, was investigated. The initial fatty acid content of the C. vulgaris was 360.2 mg/g cell. The combination of sonication and homogenization broke up the microalgal cell walls, thereby facilitating lipid recovery. By this method, the lipid-recovery yields were increased compared with that by solo use of either homogenization or sonication. Further, chloroform-methanol, as a recovery solvent, significantly enhanced lipid recovery (237.5 mg lipid/g cell at 60 min reaction time) relative to hexane (152.0 mg lipid/g cell at 60 min reaction time).

Suggested Citation

  • Park, Ji-Yeon & Lee, Kyubock & Choi, Sun-A & Jeong, Min-Ji & Kim, Bohwa & Lee, Jin-Suk & Oh, You-Kwan, 2015. "Sonication-assisted homogenization system for improved lipid extraction from Chlorella vulgaris," Renewable Energy, Elsevier, vol. 79(C), pages 3-8.
  • Handle: RePEc:eee:renene:v:79:y:2015:i:c:p:3-8
    DOI: 10.1016/j.renene.2014.10.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114006223
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.10.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cho, Hyeon-Soo & Oh, You-Kwan & Park, Soon-Chul & Lee, Jae-Wook & Park, Ji-Yeon, 2013. "Effects of enzymatic hydrolysis on lipid extraction from Chlorella vulgaris," Renewable Energy, Elsevier, vol. 54(C), pages 156-160.
    2. Halim, Ronald & Harun, Razif & Danquah, Michael K. & Webley, Paul A., 2012. "Microalgal cell disruption for biofuel development," Applied Energy, Elsevier, vol. 91(1), pages 116-121.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Masoud Derakhshandeh & Tahir Atici & Umran Tezcan UN, 2019. "Lipid extraction from microalgae Chlorella and Synechocystis sp. using glass microparticles as disruption enhancer," Energy & Environment, , vol. 30(8), pages 1341-1355, December.
    2. Kwak, Minsoo & Kim, Donghyun & Kim, Sungwhan & Lee, Hansol & Chang, Yong Keun, 2020. "Solvent screening and process optimization for high shear-assisted lipid extraction from wet cake of Nannochloropsis sp," Renewable Energy, Elsevier, vol. 149(C), pages 1395-1405.
    3. Vasistha, S. & Khanra, A. & Clifford, M. & Rai, M.P., 2021. "Current advances in microalgae harvesting and lipid extraction processes for improved biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    4. Bobde, Kiran & Momin, Huda & Bhattacharjee, Ashish & Aikat, Kaustav, 2019. "Energy assessment and enhancement of the lipid yield of indigenous Chlorella sp. KA-24NITD using Taguchi approach," Renewable Energy, Elsevier, vol. 131(C), pages 1226-1235.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yi & Kong, Xiaoying & Wang, Zhongming & Sun, Yongming & Zhu, Shunni & Li, Lianhua & Lv, Pengmei, 2018. "Optimization of enzymatic hydrolysis for effective lipid extraction from microalgae Scenedesmus sp," Renewable Energy, Elsevier, vol. 125(C), pages 1049-1057.
    2. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    3. Amarnath Krishnamoorthy & Cristina Rodriguez & Andy Durrant, 2022. "Sustainable Approaches to Microalgal Pre-Treatment Techniques for Biodiesel Production: A Review," Sustainability, MDPI, vol. 14(16), pages 1-30, August.
    4. Ayesha Aslam & Sumaira Rasul & Ali Bahadar & Nazia Hossain & Muhammad Saleem & Sabir Hussain & Lubna Rasool & Hamid Manzoor, 2021. "Effect of Micronutrient and Hormone on Microalgae Growth Assessment for Biofuel Feedstock," Sustainability, MDPI, vol. 13(9), pages 1-20, April.
    5. Park, Ji-Yeon & Kim, Min-Cheol & Cheng, Jun & Yang, Weijuan & Kim, Deog-Keun, 2020. "Extraction of microalgal oil from Nannochloropsis oceanica by potassium hydroxide-assisted solvent extraction for heterogeneous transesterification," Renewable Energy, Elsevier, vol. 162(C), pages 2056-2065.
    6. Oncel, Suphi S., 2013. "Microalgae for a macroenergy world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 241-264.
    7. Salam, Kamoru A. & Velasquez-Orta, Sharon B. & Harvey, Adam P., 2016. "A sustainable integrated in situ transesterification of microalgae for biodiesel production and associated co-product-a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1179-1198.
    8. Henna Mohi ud din Wani & Chiu-Wen Chen & Chun-Yung Huang & Reeta Rani Singhania & Young Joon Sung & Cheng-Di Dong & Anil Kumar Patel, 2023. "Development of Bioactive Peptides Derived from Red Algae for Dermal Care Applications: Recent Advances," Sustainability, MDPI, vol. 15(11), pages 1-17, May.
    9. Saddam H. Al-lwayzy & Talal Yusaf & Raed A. Al-Juboori, 2014. "Biofuels from the Fresh Water Microalgae Chlorella vulgaris (FWM-CV) for Diesel Engines," Energies, MDPI, vol. 7(3), pages 1-23, March.
    10. D’Alessandro, Emmanuel B. & Antoniosi Filho, Nelson R., 2016. "Concepts and studies on lipid and pigments of microalgae: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 832-841.
    11. Singh, Bhaskar & Guldhe, Abhishek & Rawat, Ismail & Bux, Faizal, 2014. "Towards a sustainable approach for development of biodiesel from plant and microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 216-245.
    12. Islam, Muhammad Aminul & Heimann, Kirsten & Brown, Richard J., 2017. "Microalgae biodiesel: Current status and future needs for engine performance and emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1160-1170.
    13. Wang, Songmei & Zhu, Johnny & Dai, Lingmei & Zhao, Xuebing & Liu, Dehua & Du, Wei, 2016. "A novel process on lipid extraction from microalgae for biodiesel production," Energy, Elsevier, vol. 115(P1), pages 963-968.
    14. Masoud Derakhshandeh & Tahir Atici & Umran Tezcan UN, 2019. "Lipid extraction from microalgae Chlorella and Synechocystis sp. using glass microparticles as disruption enhancer," Energy & Environment, , vol. 30(8), pages 1341-1355, December.
    15. Bruno Rafael de Almeida Moreira & Ronaldo da Silva Viana & Victor Hugo Cruz & Paulo Renato Matos Lopes & Celso Tadao Miasaki & Anderson Chagas Magalhães & Paulo Alexandre Monteiro de Figueiredo & Luca, 2020. "Anti-Thermal Shock Binding of Liquid-State Food Waste to Non-Wood Pellets," Energies, MDPI, vol. 13(12), pages 1-26, June.
    16. Onumaegbu, C. & Alaswad, A. & Rodriguez, C. & Olabi, A., 2019. "Modelling and optimization of wet microalgae Scenedesmus quadricauda lipid extraction using microwave pre-treatment method and response surface methodology," Renewable Energy, Elsevier, vol. 132(C), pages 1323-1331.
    17. Arcigni, Francesco & Friso, Riccardo & Collu, Maurizio & Venturini, Mauro, 2019. "Harmonized and systematic assessment of microalgae energy potential for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 614-624.
    18. Hu, Yulin & Gong, Mengyue & Feng, Shanghuan & Xu, Chunbao (Charles) & Bassi, Amarjeet, 2019. "A review of recent developments of pre-treatment technologies and hydrothermal liquefaction of microalgae for bio-crude oil production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 476-492.
    19. Yusaf, Talal & Al-Juboori, Raed A., 2014. "Alternative methods of microorganism disruption for agricultural applications," Applied Energy, Elsevier, vol. 114(C), pages 909-923.
    20. Ngamsirisomsakul, Marika & Reungsang, Alissara & Liao, Qiang & Kongkeitkajorn, Mallika Boonmee, 2019. "Enhanced bio-ethanol production from Chlorella sp. biomass by hydrothermal pretreatment and enzymatic hydrolysis," Renewable Energy, Elsevier, vol. 141(C), pages 482-492.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:79:y:2015:i:c:p:3-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.