IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v84y2007i10p1028-1043.html
   My bibliography  Save this article

Evaporatively-cooled compression using a high-pressure refrigerant

Author

Listed:
  • Perez-Blanco, H.
  • Kim, Kyoung-Hoon
  • Ream, Stephen

Abstract

Evaporative cooling of fluids under compression reduces the input work with relatively low equipment costs. Currently, water injection at about 1% of the air mass-flow rate is used; additional cooling can be obtained with higher injection rates. Water is non-toxic and relatively non-corrosive, which makes it the fluid of choice for evaporatively-cooled compressors in gas turbines. Water does have a relatively low vapor-pressure, that tends to limit the amount evaporated, although its large heat of vaporization partially compensates for this deficiency. Residence times in compressors are of the order of hundredths of seconds. Hence, the time available for evaporation is brief. One expectation is that higher-vapor-pressure refrigerants could evaporate at higher rates, and hence overcome some of the limitations of water. We present here a study of such a refrigerant, but the results fall short of expectations: evaporation is projected to occur fast initially, but the reduced work expectation does not fully materialize. A heat-and-mass transfer model that predicts droplet evaporation is used for our projections. Three parameters are varied to determine their effects on the compressor calculated performance: injection ratio, initial droplet radius, and pressure ratio. Low compressor discharge temperatures appear possible, which in some applications in gas turbines could uphold definite promise for recuperative cycles. Yet, the difficulties associated with the combustion process involving a refrigerant may very well override all other considerations. For the general case of evaporatively-cooled compression, high-pressure substances would need much larger heats of vaporization than the ones considered here for their application to be sustainable as compared with water.

Suggested Citation

  • Perez-Blanco, H. & Kim, Kyoung-Hoon & Ream, Stephen, 2007. "Evaporatively-cooled compression using a high-pressure refrigerant," Applied Energy, Elsevier, vol. 84(10), pages 1028-1043, October.
  • Handle: RePEc:eee:appene:v:84:y:2007:i:10:p:1028-1043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(07)00044-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barakat, Elsayed & Jin, Tai & Wang, Gaofeng, 2023. "Performance analysis of selective exhaust gas recirculation integrated with fogging cooling system for gas turbine power plants," Energy, Elsevier, vol. 263(PC).
    2. Kyoung Hoon Kim & Kyoungjin Kim, 2012. "Exergy Analysis of Overspray Process in Gas Turbine Systems," Energies, MDPI, vol. 5(8), pages 1-14, July.
    3. Comakli, K. & Simsek, F. & Comakli, O. & Sahin, B., 2009. "Determination of optimum working conditions R22 and R404A refrigerant mixtures in heat-pumps using Taguchi method," Applied Energy, Elsevier, vol. 86(11), pages 2451-2458, November.
    4. Mahdi Deymi-Dashtebayaz & Parisa Kazemiani-Najafabad, 2019. "Energy, Exergy, Economic, and Environmental analysis for various inlet air cooling methods on Shahid Hashemi-Nezhad gas turbines refinery," Energy & Environment, , vol. 30(3), pages 481-498, May.
    5. Ehyaei, M.A. & Mozafari, A. & Alibiglou, M.H., 2011. "Exergy, economic & environmental (3E) analysis of inlet fogging for gas turbine power plant," Energy, Elsevier, vol. 36(12), pages 6851-6861.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:84:y:2007:i:10:p:1028-1043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.