IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v41y2020i6p281-304.html
   My bibliography  Save this article

Locational Investment Signals: How to Steer the Siting of New Generation Capacity in Power Systems?

Author

Listed:
  • Anselm Eicke
  • Tarun Khanna
  • Lion Hirth

Abstract

New generators located far from consumption centers require transmission infrastructure and increase network losses. The primary objective of this paper is to study signals that affect the location of generation investment. Such signals result from the electricity market itself and from additional regulatory instruments. We cluster them into five groups: locational electricity markets, deep grid connection charges, grid usage charges, capacity mechanisms, and renewable energy support schemes. We review the use of instruments in twelve major power systems and discuss relevant properties, including a quantitative estimate of their strength. We find that most systems use multiple instruments in parallel, and none of the identified instruments prevails. The signals vary between locations by up to 20 EUR per MWh. Such a difference is significant when compared to the levelized costs of combined cycle plants of 64-72 EUR per MWh in Europe.

Suggested Citation

  • Anselm Eicke & Tarun Khanna & Lion Hirth, 2020. "Locational Investment Signals: How to Steer the Siting of New Generation Capacity in Power Systems?," The Energy Journal, , vol. 41(6), pages 281-304, November.
  • Handle: RePEc:sae:enejou:v:41:y:2020:i:6:p:281-304
    DOI: 10.5547/01956574.41.6.aeic
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/01956574.41.6.aeic
    Download Restriction: no

    File URL: https://libkey.io/10.5547/01956574.41.6.aeic?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Johannes Wagner, 2019. "Grid Investment and Support Schemes for Renewable Electricity Generation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    2. Nieto, Amparo D. & Fraser, Hamish, 2007. "Locational Electricity Capacity Markets: Alternatives to Restore the Missing Signals," The Electricity Journal, Elsevier, vol. 20(2), pages 10-26, March.
    3. Joskow, Paul L., 2008. "Capacity payments in imperfect electricity markets: Need and design," Utilities Policy, Elsevier, vol. 16(3), pages 159-170, September.
    4. Keller, Katja & Wild, Jorg, 2004. "Long-term investment in electricity: a trade-off between co-ordination and competition?," Utilities Policy, Elsevier, vol. 12(4), pages 243-251, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Georg Thomaßen & Thomas Bruckner, 2024. "Resource Adequacy through Operating Reserve Demand Curves: Design Options and their Impact on the Market Equilibrium," The Energy Journal, , vol. 45(3), pages 125-152, May.
    2. Simshauser, Paul & Newbery, David, 2024. "Non-firm vs priority access: On the long run average and marginal costs of renewables in Australia," Energy Economics, Elsevier, vol. 136(C).
    3. Pär Holmberg, 2025. "The inc-dec game and how to mitigate it," Working Papers EPRG2501, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    4. Kim, James Hyungkwan & Millstein, Dev & Wiser, Ryan & Mulvaney-Kemp, Julie, 2024. "Renewable-battery hybrid power plants in congested electricity markets: Implications for plant configuration," Renewable Energy, Elsevier, vol. 232(C).
    5. Holmberg, Pär, 2024. "The Inc-Dec Game and How to Mitigate It," Working Paper Series 1512, Research Institute of Industrial Economics.
    6. Newbery, David M. & Biggar, Darryl R., 2024. "Marginal curtailment of wind and solar PV: Transmission constraints, pricing and access regimes for efficient investment," Energy Policy, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simshauser, Paul, 2024. "On static vs. dynamic line ratings in renewable energy zones," Energy Economics, Elsevier, vol. 129(C).
    2. Paul Simshauser & Farhad Billimoria & Craig Rogers, 2021. "Optimising VRE plant capacity in Renewable Energy Zones," Working Papers EPRG2121, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    3. Simshauser, Paul, 2021. "Renewable Energy Zones in Australia's National Electricity Market," Energy Economics, Elsevier, vol. 101(C).
    4. Andor, Mark A. & Frondel, Manuel & Schmidt, Christoph M. & Simora, Michael & Sommer, Stephan, 2015. "Klima- und Energiepolitik in Deutschland: Dissens und Konsens," RWI Materialien 91, RWI - Leibniz-Institut für Wirtschaftsforschung.
    5. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    6. Elberg, Christina, 2014. "Cross-Border Effects of Capacity Mechanisms in Electricity Markets," EWI Working Papers 2014-11, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    7. Growitsch, Christian & Just, Lisa & Pedell, Burkhard, 2014. "Risk Assessment of Investments in Energy-only and Capacity Markets," Die Unternehmung - Swiss Journal of Business Research and Practice, Nomos Verlagsgesellschaft mbH & Co. KG, vol. 68(3), pages 181-188.
    8. David M. Newbery & David M. Reiner & Robert A. Ritz, 2019. "The Political Economy of a Carbon Price Floor for Power Generation," The Energy Journal, , vol. 40(1), pages 1-24, January.
    9. David P. Brown & Andrew Eckert, 2018. "Analyzing the Impact of Electricity Market Structure Changes and Mergers: The Importance of Forward Commitments," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 52(1), pages 101-137, February.
    10. Juha Teirilä and Robert A. Ritz, 2019. "Strategic Behaviour in a Capacity Market? The New Irish Electricity Market Design," The Energy Journal, International Association for Energy Economics, vol. 0(The New E).
    11. Steggals, Will & Gross, Robert & Heptonstall, Philip, 2011. "Winds of change: How high wind penetrations will affect investment incentives in the GB electricity sector," Energy Policy, Elsevier, vol. 39(3), pages 1389-1396, March.
    12. Ochoa, Camila & van Ackere, Ann, 2015. "Winners and losers of market coupling," Energy, Elsevier, vol. 80(C), pages 522-534.
    13. Meyer, Roland & Gore, Olga, 2015. "Cross-border effects of capacity mechanisms: Do uncoordinated market design changes contradict the goals of the European market integration?," Energy Economics, Elsevier, vol. 51(C), pages 9-20.
    14. David Benatia & Samuel Gingras, 2023. "Reaching New Lows? The Pandemic’s Consequences for Electricity Markets," The Energy Journal, , vol. 44(4), pages 195-221, July.
    15. Aryani, Morteza & Ahmadian, Mohammad & Sheikh-El-Eslami, Mohammad-Kazem, 2020. "Designing a regulatory tool for coordinated investment in renewable and conventional generation capacities considering market equilibria," Applied Energy, Elsevier, vol. 279(C).
    16. Hagspiel, Simeon, 2017. "Reliable Electricity: The Effects of System Integration and Cooperative Measures to Make it Work," EWI Working Papers 2017-13, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    17. Simshauser, P., 2020. "Merchant utilities and boundaries of the firm: vertical integration in energy-only markets," Cambridge Working Papers in Economics 2039, Faculty of Economics, University of Cambridge.
    18. Simshauser, P. & Gilmore, J., 2020. "Is the NEM broken? Policy discontinuity and the 2017-2020 investment megacycle," Cambridge Working Papers in Economics 2048, Faculty of Economics, University of Cambridge.
    19. Rious, Vincent & Perez, Yannick & Roques, Fabien, 2015. "Which electricity market design to encourage the development of demand response?," Economic Analysis and Policy, Elsevier, vol. 48(C), pages 128-138.
    20. Mastropietro, Paolo & Rodilla, Pablo & Rivier, Michel & Batlle, Carlos, 2024. "Reliability options: Regulatory recommendations for the next generation of capacity remuneration mechanisms," Energy Policy, Elsevier, vol. 185(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:41:y:2020:i:6:p:281-304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.