IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v44y2023i4p21-52.html
   My bibliography  Save this article

One Price Fits All? On Inefficient Siting Incentives for Wind Power Expansion in Germany under Uniform Pricing

Author

Listed:
  • Lukas Schmidt
  • Jonas Zinke

Abstract

This paper evaluates investment incentives for wind power under two market designs: uniform and nodal pricing. An electricity system model is developed, that allows for investments in wind power capacities while carefully accounting for static transmission grid constraints. Wind power capacities are assumed to reach the same expansion target by 2030 under both market designs. The results show that the introduction of nodal prices leads to investments in wind power plants shifting to locations with lower wind yield. The amount of electricity fed into the grid from wind power plants, however, is higher under nodal pricing as curtailment is reduced by two-thirds. Furthermore, grid-optimal wind locations are shown to require higher direct subsidy payments but decrease yearly variable supply costs by 1.5% in 2030. Yet distributional effects present an obstacle to the introduction of a nodal pricing regime, with about 75% of German demand facing an increase in electricity costs of about 5%. To mitigate the distorted investment signals arising from uniform pricing regimes, restricting investments within grid expansion areas proves to be more promising than including latitude-dependent generator-component in the grid tariff design.

Suggested Citation

  • Lukas Schmidt & Jonas Zinke, 2023. "One Price Fits All? On Inefficient Siting Incentives for Wind Power Expansion in Germany under Uniform Pricing," The Energy Journal, , vol. 44(4), pages 21-52, July.
  • Handle: RePEc:sae:enejou:v:44:y:2023:i:4:p:21-52
    DOI: 10.5547/01956574.44.4.lsch
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/01956574.44.4.lsch
    Download Restriction: no

    File URL: https://libkey.io/10.5547/01956574.44.4.lsch?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Johannes Wagner, 2019. "Grid Investment and Support Schemes for Renewable Electricity Generation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    2. Peter, Jakob, 2019. "How does climate change affect electricity system planning and optimal allocation of variable renewable energy?," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    3. Grimm, Veronika & Martin, Alexander & Schmidt, Martin & Weibelzahl, Martin & Zöttl, Gregor, 2016. "Transmission and generation investment in electricity markets: The effects of market splitting and network fee regimes," European Journal of Operational Research, Elsevier, vol. 254(2), pages 493-509.
    4. Felix Höffler & Achim Wambach, 2013. "Investment coordination in network industries: the case of electricity grid and electricity generation," Journal of Regulatory Economics, Springer, vol. 44(3), pages 287-307, December.
    5. Fürsch, Michaela & Hagspiel, Simeon & Jägemann, Cosima & Nagl, Stephan & Lindenberger, Dietmar & Tröster, Eckehard, 2013. "The role of grid extensions in a cost-efficient transformation of the European electricity system until 2050," Applied Energy, Elsevier, vol. 104(C), pages 642-652.
    6. Leuthold, Florian & Weigt, Hannes & von Hirschhausen, Christian, 2008. "Efficient pricing for European electricity networks - The theory of nodal pricing applied to feeding-in wind in Germany," Utilities Policy, Elsevier, vol. 16(4), pages 284-291, December.
    7. Höffler, Felix & Wambach, Achim, 2013. "Investment Coordination in Network Industries: The Case of Electricity Grid and Electricity," EWI Working Papers 2013-12, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    8. Peter, Jakob, 2019. "How Does Climate Change Affect Optimal Allocation of Variable Renewable Energy?," EWI Working Papers 2019-3, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    9. Richard Green, 2007. "Nodal pricing of electricity: how much does it cost to get it wrong?," Journal of Regulatory Economics, Springer, vol. 31(2), pages 125-149, April.
    10. Daxhelet, O. & Smeers, Y., 2007. "The EU regulation on cross-border trade of electricity: A two-stage equilibrium model," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1396-1412, September.
    11. Bertsch, Joachim, 2015. "Is an inefficient transmission market better than none at all? On zonal and nodal pricing in electricity systems," EWI Working Papers 2015-5, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bertsch, Joachim & Hagspiel, Simeon & Just, Lisa, 2016. "Congestion management in power systems - Long-term modeling framework and large-scale application," EWI Working Papers 2015-3, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    2. Joachim Bertsch & Simeon Hagspiel & Lisa Just, 2016. "Congestion management in power systems," Journal of Regulatory Economics, Springer, vol. 50(3), pages 290-327, December.
    3. Ruderer, Dominik & Zöttl, Gregor, 2018. "Transmission pricing and investment incentives," Utilities Policy, Elsevier, vol. 55(C), pages 14-30.
    4. Veronika Grimm & Alexander Martin & Christian Sölch & Martin Weibelzahl & Gregor Zöttl, 2022. "Market-Based Redispatch May Result in Inefficient Dispatch," The Energy Journal, , vol. 43(5), pages 205-230, September.
    5. Ambrosius, Mirjam & Grimm, Veronika & Kleinert, Thomas & Liers, Frauke & Schmidt, Martin & Zöttl, Gregor, 2020. "Endogenous price zones and investment incentives in electricity markets: An application of multilevel optimization with graph partitioning," Energy Economics, Elsevier, vol. 92(C).
    6. Simshauser, Paul, 2024. "On static vs. dynamic line ratings in renewable energy zones," Energy Economics, Elsevier, vol. 129(C).
    7. Grimm, Veronika & Schewe, Lars & Schmidt, Martin & Zöttl, Gregor, 2017. "Uniqueness of market equilibrium on a network: A peak-load pricing approach," European Journal of Operational Research, Elsevier, vol. 261(3), pages 971-983.
    8. Paul Simshauser & Farhad Billimoria & Craig Rogers, 2021. "Optimising VRE plant capacity in Renewable Energy Zones," Working Papers EPRG2121, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    9. Ambrosius, M. & Egerer, J. & Grimm, V. & Weijde, A.H. van der, 2020. "Uncertain bidding zone configurations: The role of expectations for transmission and generation capacity expansion," European Journal of Operational Research, Elsevier, vol. 285(1), pages 343-359.
    10. Simshauser, Paul, 2021. "Renewable Energy Zones in Australia's National Electricity Market," Energy Economics, Elsevier, vol. 101(C).
    11. Grimm, Veronika & Rückel, Bastian & Sölch, Christian & Zöttl, Gregor, 2021. "The impact of market design on transmission and generation investment in electricity markets," Energy Economics, Elsevier, vol. 93(C).
    12. Heffron, Raphael J. & Körner, Marc-Fabian & Sumarno, Theresia & Wagner, Jonathan & Weibelzahl, Martin & Fridgen, Gilbert, 2022. "How different electricity pricing systems affect the energy trilemma: Assessing Indonesia's electricity market transition," Energy Economics, Elsevier, vol. 107(C).
    13. Triolo, Ryan C. & Wolak, Frank A., 2022. "Quantifying the benefits of a nodal market design in the Texas electricity market," Energy Economics, Elsevier, vol. 112(C).
    14. Grimm, Veronika & Rückel, Bastian & Sölch, Christian & Zöttl, Gregor, 2019. "Regionally differentiated network fees to affect incentives for generation investment," Energy, Elsevier, vol. 177(C), pages 487-502.
    15. Schmidt, Lukas & Zinke, Jonas, 2020. "One price fits all? Wind power expansion under uniform and nodal pricing in Germany," EWI Working Papers 2020-6, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    16. Wagner, Johannes, 2016. "Grid Investment and Support Schemes for Renewable Electricity Generation," EWI Working Papers 2016-8, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 10 Aug 2017.
    17. Lim, Juin Yau & Safder, Usman & How, Bing Shen & Ifaei, Pouya & Yoo, Chang Kyoo, 2021. "Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model," Applied Energy, Elsevier, vol. 283(C).
    18. Martin Weibelzahl & Alexandra Märtz, 2020. "Optimal storage and transmission investments in a bilevel electricity market model," Annals of Operations Research, Springer, vol. 287(2), pages 911-940, April.
    19. Lovro Frković & Boris Ćosić & Tomislav Pukšec & Nikola Vladimir, 2023. "Modelling of the Standalone Onshore Charging Station: The Nexus between Offshore Renewables and All-Electric Ships," Energies, MDPI, vol. 16(15), pages 1-16, August.
    20. Neuhoff, Karsten & Barquin, Julian & Bialek, Janusz W. & Boyd, Rodney & Dent, Chris J. & Echavarren, Francisco & Grau, Thilo & von Hirschhausen, Christian & Hobbs, Benjamin F. & Kunz, Friedrich & Nabe, 2013. "Renewable electric energy integration: Quantifying the value of design of markets for international transmission capacity," Energy Economics, Elsevier, vol. 40(C), pages 760-772.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:44:y:2023:i:4:p:21-52. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.