IDEAS home Printed from https://ideas.repec.org/a/bla/obuest/v65y2003is1p769-801.html
   My bibliography  Save this article

General‐to‐Specific Model Selection Procedures for Structural Vector Autoregressions

Author

Listed:
  • Hans‐Martin Krolzig

Abstract

Structural vector autoregressive (SVAR) models have emerged as a dominant research strategy in empirical macroeconomics, but suffer from the large number of parameters employed and the resulting estimation uncertainty associated with their impulse responses. In this paper, we propose general‐to‐specific (Gets) model selection procedures to overcome these limitations. It is shown that single‐equation procedures are generally efficient for the reduction of recursive SVAR models. The small‐sample properties of the proposed reduction procedure (as implemented using PcGets) are evaluated in a realistic Monte Carlo experiment. The impulse responses generated by the selected SVAR are found to be more precise and accurate than those of the unrestricted VAR. The proposed reduction strategy is then applied to the US monetary system considered by Christiano, Eichenbaum and Evans (Review of Economics and Statistics, Vol. 78, pp. 16–34, 1996). The results are consistent with the Monte Carlo and question the validity of the impulse responses generated by the full system.

Suggested Citation

  • Hans‐Martin Krolzig, 2003. "General‐to‐Specific Model Selection Procedures for Structural Vector Autoregressions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 769-801, December.
  • Handle: RePEc:bla:obuest:v:65:y:2003:i:s1:p:769-801
    DOI: 10.1046/j.0305-9049.2003.00088.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1046/j.0305-9049.2003.00088.x
    Download Restriction: no

    File URL: https://libkey.io/10.1046/j.0305-9049.2003.00088.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kevin D. Hoover & Stephen J. Perez, 1999. "Data mining reconsidered: encompassing and the general-to-specific approach to specification search," Econometrics Journal, Royal Economic Society, vol. 2(2), pages 167-191.
    2. Blanchard, Olivier Jean & Quah, Danny, 1989. "The Dynamic Effects of Aggregate Demand and Supply Disturbances," American Economic Review, American Economic Association, vol. 79(4), pages 655-673, September.
    3. Christiano, Lawrence J & Eichenbaum, Martin & Evans, Charles, 1996. "The Effects of Monetary Policy Shocks: Evidence from the Flow of Funds," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 16-34, February.
    4. David F. Hendry & Hans-Martin Krolzig, 2005. "The Properties of Automatic "GETS" Modelling," Economic Journal, Royal Economic Society, vol. 115(502), pages C32-C61, 03.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lein, Sarah M. & León-Ledesma, Miguel A. & Nerlich, Carolin, 2008. "How is real convergence driving nominal convergence in the new EU Member States?," Journal of International Money and Finance, Elsevier, vol. 27(2), pages 227-248, March.
    2. Oscar Díaz Q. & Marco Laguna V., 2007. "Factores que explican la reducción de las tasas pasivas de interés en el sistema bancario boliviano," Monetaria, CEMLA, vol. 0(4), pages 331-366, octubre-d.
    3. Allen, P. Geoffrey & Morzuch, Bernard J., 2006. "Twenty-five years of progress, problems, and conflicting evidence in econometric forecasting. What about the next 25 years?," International Journal of Forecasting, Elsevier, vol. 22(3), pages 475-492.
    4. Genaro Sucarrat & Alvaro Escribano, 2012. "Automated Model Selection in Finance: General-to-Specific Modelling of the Mean and Volatility Specifications," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(5), pages 716-735, October.
    5. Carl Bonham & Calla Wiemer, 2013. "Chinese saving dynamics: the impact of GDP growth and the dependent share," Oxford Economic Papers, Oxford University Press, vol. 65(1), pages 173-196, January.
    6. Pu Chen & Chih-Ying Hsiao, 2010. "Causal Inference for Structural Equations: With an Application to Wage-Price Spiral," Computational Economics, Springer;Society for Computational Economics, vol. 36(1), pages 17-36, June.
    7. Dobromił Serwa & Piotr Wdowiński, 2017. "Modeling Macro-Financial Linkages: Combined Impulse Response Functions in SVAR Models," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 9(4), pages 323-357, December.
    8. Bonham, Carl & Gangnes, Byron & Zhou, Ting, 2009. "Modeling tourism: A fully identified VECM approach," International Journal of Forecasting, Elsevier, vol. 25(3), pages 531-549, July.
    9. Dale Roberts & Laura Ryan, 2015. "Evidence of speculation in world oil prices," Australian Journal of Management, Australian School of Business, vol. 40(4), pages 630-651, November.
    10. Krolzig, Hans-Martin & Sserwanja, Isaac, 2015. "Fiscal Policy, Interest Rates, and Output: Equilibrium-Correction Dynamics in the US Economy," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112813, Verein für Socialpolitik / German Economic Association.
    11. Geng, Jiang-Bo & Chen, Fu-Rui & Ji, Qiang & Liu, Bing-Yue, 2021. "Network connectedness between natural gas markets, uncertainty and stock markets," Energy Economics, Elsevier, vol. 95(C).
    12. Castle Jennifer L. & Doornik Jurgen A & Hendry David F., 2011. "Evaluating Automatic Model Selection," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-33, February.
    13. Alejandro Gaytán & Jesús González-García, 2007. "Cambios estructurales en el mecanismo de transmisión de la política monetaria en México: un enfoque VAR no lineal," Monetaria, CEMLA, vol. 0(4), pages 367-404, octubre-d.
    14. Jennifer L. Castle & Xiaochuan Qin & W. Robert Reed, 2013. "Using Model Selection Algorithms To Obtain Reliable Coefficient Estimates," Journal of Economic Surveys, Wiley Blackwell, vol. 27(2), pages 269-296, April.
    15. Abhijit Sharma & Kelvin G Balcombe & Iain M Fraser, 2009. "Non-renewable resource prices: Structural breaks and long term trends," Economics Bulletin, AccessEcon, vol. 29(2), pages 805-819.
    16. Allison Zhou & Carl Bonham & Byron Gangnes, 2007. "Modeling the supply and demand for tourism: a fully identified VECM approach," Working Papers 200717, University of Hawaii at Manoa, Department of Economics.
    17. Gerth, Florian, 2023. "Nexus between Financial Inclusion and Economic Activity: A Study about Traditional and Non-Traditional Financial Service Indicators Determining Financial Outreach," MPRA Paper 119265, University Library of Munich, Germany.
    18. David F. Hendry & Hans-Martin Krolzig, 2003. "Sub-sample Model Selection Procedures in Gets Modelling," Economics Papers 2003-W17, Economics Group, Nuffield College, University of Oxford.
    19. Sucarrat, Genaro, 2009. "Automated financial multi-path GETS modelling," UC3M Working papers. Economics we093620, Universidad Carlos III de Madrid. Departamento de Economía.
    20. Cheong, Chongcheul & Lee, Hyunchul, 2014. "Forecasting with a parsimonious subset VAR model," Economics Letters, Elsevier, vol. 125(2), pages 167-170.
    21. Alvaro Escribano & Genaro Sucarrat, 2011. "Automated model selection in finance: General-to-speci c modelling of the mean and volatility speci cations," Working Papers 2011-09, Instituto Madrileño de Estudios Avanzados (IMDEA) Ciencias Sociales.
    22. Julia Campos & Neil R. Ericsson & David F. Hendry, 2005. "General-to-specific modeling: an overview and selected bibliography," International Finance Discussion Papers 838, Board of Governors of the Federal Reserve System (U.S.).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masagus M. Ridhwan & Henri L. F. Groot & Piet Rietveld & Peter Nijkamp, 2014. "The Regional Impact of Monetary Policy in Indonesia," Growth and Change, Wiley Blackwell, vol. 45(2), pages 240-262, June.
    2. Monticello, Carlo & Tristani, Oreste, 1999. "What does the single monetary policy do? A SVAR benchmark for the European Central Bank," Working Paper Series 2, European Central Bank.
    3. Carlo A. Favero, 2009. "The Econometrics of Monetary Policy: An Overview," Palgrave Macmillan Books, in: Terence C. Mills & Kerry Patterson (ed.), Palgrave Handbook of Econometrics, chapter 16, pages 821-850, Palgrave Macmillan.
    4. Monticello, Carlo & Tristani, Oreste, 1999. "What does the single monetary policy do? A SVAR benchmark for the European Central Bank," Working Paper Series 0002, European Central Bank.
    5. Selva Demiralp & Kevin Hoover & Stephen Perez, 2014. "Still puzzling: evaluating the price puzzle in an empirically identified structural vector autoregression," Empirical Economics, Springer, vol. 46(2), pages 701-731, March.
    6. Evans, Charles L. & Marshall, David A., 2007. "Economic determinants of the nominal treasury yield curve," Journal of Monetary Economics, Elsevier, vol. 54(7), pages 1986-2003, October.
    7. Dickinson, David & Liu, Jia, 2007. "The real effects of monetary policy in China: An empirical analysis," China Economic Review, Elsevier, vol. 18(1), pages 87-111.
    8. Carlo A. Favero, 2007. "Model Evaluation in Macroeconometrics: from early empirical macroeconomic models to DSGE models," Working Papers 327, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    9. Evans, Charles L. & Marshall, David A., 1998. "Monetary policy and the term structure of nominal interest rates: Evidence and theory," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 49(1), pages 53-111, December.
    10. Masagus M. Ridhwan & Henri L.F. de Groot & Peter Nijkamp, 2010. "The Impact of Monetary Policy on Economic Activity - Evidence from a Meta-Analysis," Tinbergen Institute Discussion Papers 10-043/3, Tinbergen Institute.
    11. Uhlig, Harald, 2005. "What are the effects of monetary policy on output? Results from an agnostic identification procedure," Journal of Monetary Economics, Elsevier, vol. 52(2), pages 381-419, March.
    12. Jeremy Lawson & Daniel Rees, 2008. "A Sectoral Model of the Australian Economy," RBA Research Discussion Papers rdp2008-01, Reserve Bank of Australia.
    13. Dawid J. van Lill, 2017. "Changes in the Liquidity Effect Over Time: Evidence from Four Monetary Policy Regimes," Working Papers 704, Economic Research Southern Africa.
    14. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    15. R. Bonci & F. Columba, 2008. "Monetary policy effects: new evidence from the Italian flow-of-funds," Applied Economics, Taylor & Francis Journals, vol. 40(21), pages 2803-2818.
    16. Li, Yun Daisy & Iscan, Talan B. & Xu, Kuan, 2010. "The impact of monetary policy shocks on stock prices: Evidence from Canada and the United States," Journal of International Money and Finance, Elsevier, vol. 29(5), pages 876-896, September.
    17. Bagliano, Fabio C. & Favero, Carlo A., 1998. "Measuring monetary policy with VAR models: An evaluation," European Economic Review, Elsevier, vol. 42(6), pages 1069-1112, June.
    18. Imke Brüggemann, 2003. "Measuring Monetary Policy in Germany: A Structural Vector Error Correction Approach," German Economic Review, Verein für Socialpolitik, vol. 4(3), pages 307-339, August.
    19. Hendry, David F. & Mizon, Grayham E., 2001. "Reformulating empirical macro-econometric modelling," Discussion Paper Series In Economics And Econometrics 0104, Economics Division, School of Social Sciences, University of Southampton.
    20. Julia Campos & Neil R. Ericsson & David F. Hendry, 2005. "General-to-specific modeling: an overview and selected bibliography," International Finance Discussion Papers 838, Board of Governors of the Federal Reserve System (U.S.).

    More about this item

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:obuest:v:65:y:2003:i:s1:p:769-801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/sfeixuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.