IDEAS home Printed from https://ideas.repec.org/a/prg/jnlpep/v2017y2017i2id598p127-141.html
   My bibliography  Save this article

Univariate and Bivariate Volatility in Central European Stock Markets

Author

Listed:
  • Claudiu Boţoc

Abstract

This paper examines if the volatility exhibits a symmetric or an asymmetric response to past shocks, particularly the relevance of structural breaks for Central European (hereinafter referred to as "CEE") stock markets. In addition, it is of great interest to see if the CEE emerging markets are correlated with other emerging ones, as well as to analyse the correlation with the developed markets, for optimizing investment portfolios. Using a CEE group approach (regional index) and daily data from 2002 to 2015, the results suggest that markets react differently to similar negative and positive returns, except for the rapid growth period, when the greed sentiment dominates the markets. Furthermore, the structural break dates affect volatility, the highest asymmetric coefficient being recorded for the pre-crisis period. For the bivariate approach, the emerging markets and developed markets indexes provided by the Morgan Stanley Capital International (hereinafter referred to as "MSCI") have been considered and the results suggest that CEE stock markets are correlated with emerging stock markets rather than developed ones. For both pairs, the correlation is consistently higher for the break dates characterized by an increase in volatility, which is in line with the literature that claims that the co-movements increase when international factors dominate the national ones, and influence stock markets.

Suggested Citation

  • Claudiu Boţoc, 2017. "Univariate and Bivariate Volatility in Central European Stock Markets," Prague Economic Papers, Prague University of Economics and Business, vol. 2017(2), pages 127-141.
  • Handle: RePEc:prg:jnlpep:v:2017:y:2017:i:2:id:598:p:127-141
    DOI: 10.18267/j.pep.598
    as

    Download full text from publisher

    File URL: http://pep.vse.cz/doi/10.18267/j.pep.598.html
    Download Restriction: free of charge

    File URL: http://pep.vse.cz/doi/10.18267/j.pep.598.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.18267/j.pep.598?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    2. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    3. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boţoc Claudiu, . "Univariate and Bivariate Volatility in Central European Stock Markets," Prague Economic Papers, University of Economics, Prague, vol. 0, pages 1-15.
    2. Stelios D. Bekiros, 2013. "Decoupling and the Spillover Effects of the US Financial Crisis: Evidence from the BRIC Markets," Working Paper series 21_13, Rimini Centre for Economic Analysis.
    3. Tsuji, Chikashi, 2018. "Return transmission and asymmetric volatility spillovers between oil futures and oil equities: New DCC-MEGARCH analyses," Economic Modelling, Elsevier, vol. 74(C), pages 167-185.
    4. Guochang Wang & Wai Keung Li & Ke Zhu, 2018. "New HSIC-based tests for independence between two stationary multivariate time series," Papers 1804.09866, arXiv.org.
    5. Cavit Pakel & Neil Shephard & Kevin Sheppard & Robert F. Engle, 2021. "Fitting Vast Dimensional Time-Varying Covariance Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 652-668, July.
    6. Abu S. Amin & Lucjan T. Orlowski, 2014. "Returns, Volatilities, and Correlations Across Mature, Regional, and Frontier Markets: Evidence from South Asia," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 50(3), pages 5-27, May.
    7. Lucchetti, Riccardo & Palomba, Giulio, 2009. "Nonlinear adjustment in US bond yields: An empirical model with conditional heteroskedasticity," Economic Modelling, Elsevier, vol. 26(3), pages 659-667, May.
    8. Trancoso, Tiago, 2014. "Emerging markets in the global economic network: Real(ly) decoupling?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 499-510.
    9. Pierre Giot & Sébastien Laurent, 2003. "Value-at-risk for long and short trading positions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(6), pages 641-663.
    10. Asai, Manabu & McAleer, Michael, 2015. "Forecasting co-volatilities via factor models with asymmetry and long memory in realized covariance," Journal of Econometrics, Elsevier, vol. 189(2), pages 251-262.
    11. Sun, Xiaolei & Li, Jianping & Tang, Ling & Wu, Dengsheng, 2012. "Identifying the risk-return tradeoff and exploring the dynamic risk exposure of country portfolio of the FSU's oil economies," Economic Modelling, Elsevier, vol. 29(6), pages 2494-2503.
    12. Sucarrat, Genaro & Grønneberg, Steffen & Escribano, Alvaro, 2016. "Estimation and inference in univariate and multivariate log-GARCH-X models when the conditional density is unknown," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 582-594.
    13. Roxana Chiriac & Valeri Voev, 2011. "Modelling and forecasting multivariate realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 922-947, September.
    14. repec:zbw:rwirep:0243 is not listed on IDEAS
    15. Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2012. "Multivariate high‐frequency‐based volatility (HEAVY) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 907-933, September.
    16. Vincenzo Candila, 2013. "A Comparison of the Forecasting Performances of Multivariate Volatility Models," Working Papers 3_228, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno.
    17. Manabu Asai & Michael McAleer, 2009. "Dynamic Conditional Correlations for Asymmetric Processes," CARF F-Series CARF-F-168, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    18. Massimiliano Caporin & Michael McAleer, 2011. "Thresholds, news impact surfaces and dynamic asymmetric multivariate GARCH," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 65(2), pages 125-163, May.
    19. Vincenzo Candila & Salvatore Farace, 2018. "On the Volatility Spillover between Agricultural Commodities and Latin American Stock Markets," Risks, MDPI, vol. 6(4), pages 1-16, October.
    20. Caporin, Massimiliano & McAleer, Michael, 2014. "Robust ranking of multivariate GARCH models by problem dimension," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 172-185.
    21. repec:bgu:wpaper:0608 is not listed on IDEAS
    22. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.

    More about this item

    Keywords

    volatility; asymmetry; structural breaks; contagion; multivariate GARCH;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:prg:jnlpep:v:2017:y:2017:i:2:id:598:p:127-141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stanislav Vojir (email available below). General contact details of provider: https://edirc.repec.org/data/uevsecz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.