IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0259820.html
   My bibliography  Save this article

The impact of changing cigarette smoking habits and smoke-free legislation on orofacial cleft incidence in the United Kingdom: Evidence from two time-series studies

Author

Listed:
  • Matthew Fell
  • Craig Russell
  • Jibby Medina
  • Toby Gillgrass
  • Shaheel Chummun
  • Alistair R M Cobb
  • Jonathan Sandy
  • Yvonne Wren
  • Andrew Wills
  • Sarah J Lewis

Abstract

Background: Both active and passive cigarette smoking have previously been associated with orofacial cleft aetiology. We aimed to analyse the impact of declining active smoking prevalence and the implementation of smoke-free legislation on the incidence of children born with a cleft lip and/or palate within the United Kingdom. Methods and findings: We conducted regression analysis using national administrative data in the United Kingdom between 2000–2018. The main outcome measure was orofacial cleft incidence, reported annually for England, Wales and Northern Ireland and separately for Scotland. First, we conducted an ecological study with longitudinal time-series analysis using smoking prevalence data for females over 16 years of age. Second, we used a natural experiment design with interrupted time-series analysis to assess the impact of smoke-free legislation. Over the study period, the annual incidence of orofacial cleft per 10,000 live births ranged from 14.2–16.2 in England, Wales and Northern Ireland and 13.4–18.8 in Scotland. The proportion of active smokers amongst females in the United Kingdom declined by 37% during the study period. Adjusted regression analysis did not show a correlation between the proportion of active smokers and orofacial cleft incidence in either dataset, although we were unable to exclude a modest effect of the magnitude seen in individual-level observational studies. The data in England, Wales and Northern Ireland suggested an 8% reduction in orofacial cleft incidence (RR 0.92, 95%CI 0.85 to 0.99; P = 0.024) following the implementation of smoke-free legislation. In Scotland, there was weak evidence for an increase in orofacial cleft incidence following smoke-free legislation (RR 1.16, 95%CI 0.94 to 1.44; P = 0.173). Conclusions: These two ecological studies offer a novel insight into the influence of smoking in orofacial cleft aetiology, adding to the evidence base from individual-level studies. Our results suggest that smoke-free legislation may have reduced orofacial cleft incidence in England, Wales and Northern Ireland.

Suggested Citation

  • Matthew Fell & Craig Russell & Jibby Medina & Toby Gillgrass & Shaheel Chummun & Alistair R M Cobb & Jonathan Sandy & Yvonne Wren & Andrew Wills & Sarah J Lewis, 2021. "The impact of changing cigarette smoking habits and smoke-free legislation on orofacial cleft incidence in the United Kingdom: Evidence from two time-series studies," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-18, November.
  • Handle: RePEc:plo:pone00:0259820
    DOI: 10.1371/journal.pone.0259820
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0259820
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0259820&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0259820?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Roger D. Peng & Francesca Dominici & Thomas A. Louis, 2006. "Model choice in time series studies of air pollution and mortality," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(2), pages 179-203, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunquan Zhang & Chuanhua Yu & Jin Yang & Lan Zhang & Fangfang Cui, 2017. "Diurnal Temperature Range in Relation to Daily Mortality and Years of Life Lost in Wuhan, China," IJERPH, MDPI, vol. 14(8), pages 1-11, August.
    2. Robert J. R. Elliott & Ingmar Schumacher & Cees Withagen, 2020. "Suggestions for a Covid-19 Post-Pandemic Research Agenda in Environmental Economics," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 1187-1213, August.
    3. Kai Luo & Wenjing Li & Ruiming Zhang & Runkui Li & Qun Xu & Yang Cao, 2016. "Ambient Fine Particulate Matter Exposure and Risk of Cardiovascular Mortality: Adjustment of the Meteorological Factors," IJERPH, MDPI, vol. 13(11), pages 1-17, November.
    4. Montero, José-María, 2018. "Geostatistics: Unde venis et quo vadis? /Geoestadística:¿De dónde vienes y a dónde vas?," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 36, pages 81-106, Enero.
    5. Adam A. Szpiro & Lianne Sheppard & Sara D. Adar & Joel D. Kaufman, 2014. "Estimating acute air pollution health effects from cohort study data," Biometrics, The International Biometric Society, vol. 70(1), pages 164-174, March.
    6. Fang Huang & Renjie Chen & Yuetian Shen & Haidong Kan & Xingya Kuang, 2016. "The Impact of the 2013 Eastern China Smog on Outpatient Visits for Coronary Heart Disease in Shanghai, China," IJERPH, MDPI, vol. 13(7), pages 1-6, June.
    7. Yuqing Feng & Jing Wei & Maogui Hu & Chengdong Xu & Tao Li & Jinfeng Wang & Wei Chen, 2022. "Lagged Effects of Exposure to Air Pollutants on the Risk of Pulmonary Tuberculosis in a Highly Polluted Region," IJERPH, MDPI, vol. 19(9), pages 1-13, May.
    8. Leigh Fisher & Jon Wakefield & Cici Bauer & Steve Self, 2017. "Time series modeling of pathogen-specific disease probabilities with subsampled data," Biometrics, The International Biometric Society, vol. 73(1), pages 283-293, March.
    9. Howard H. Chang & Jingwen Zhou & Montserrat Fuentes, 2010. "Impact of Climate Change on Ambient Ozone Level and Mortality in Southeastern United States," IJERPH, MDPI, vol. 7(7), pages 1-15, July.
    10. Joshua Graff Zivin & Matthew Neidell, 2013. "Environment, Health, and Human Capital," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 689-730, September.
    11. Enrico Cocchi & Valeria Bellisario & Francesco Cresi & Claudio Plazzotta & Claudio Cassardo & Consolata Siniscalco & Licia Peruzzi & Roberto Bono, 2023. "Air Pollution and Aeroallergens as Possible Triggers in Preterm Birth Delivery," IJERPH, MDPI, vol. 20(2), pages 1-15, January.
    12. Jennifer F. Bobb & Francesca Dominici & Roger D. Peng, 2011. "A Bayesian Model Averaging Approach for Estimating the Relative Risk of Mortality Associated with Heat Waves in 105 U.S. Cities," Biometrics, The International Biometric Society, vol. 67(4), pages 1605-1616, December.
    13. Shaobo Zhong & Zhichen Yu & Wei Zhu, 2019. "Study of the Effects of Air Pollutants on Human Health Based on Baidu Indices of Disease Symptoms and Air Quality Monitoring Data in Beijing, China," IJERPH, MDPI, vol. 16(6), pages 1-19, March.
    14. Joacim Rocklöv & Bertil Forsberg, 2010. "The Effect of High Ambient Temperature on the Elderly Population in Three Regions of Sweden," IJERPH, MDPI, vol. 7(6), pages 1-13, June.
    15. Chi Wang & Giovanni Parmigiani & Francesca Dominici, 2012. "Bayesian Effect Estimation Accounting for Adjustment Uncertainty," Biometrics, The International Biometric Society, vol. 68(3), pages 661-671, September.
    16. Xi-Ling Wang & Lin Yang & King-Pan Chan & Susan S Chiu & Kwok-Hung Chan & J S Malik Peiris & Chit-Ming Wong, 2012. "Model Selection in Time Series Studies of Influenza-Associated Mortality," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-7, June.
    17. Bernard Baffour & Sumonkanti Das & Mu Li & Alice Richardson, 2024. "The Utility of Socioeconomic and Remoteness Indicators in Understanding the Geographical Variation in the Regional Prevalence of Early Childhood Vulnerability in Australia," Child Indicators Research, Springer;The International Society of Child Indicators (ISCI), vol. 17(4), pages 1791-1827, August.
    18. Sajith Priyankara & Mahesh Senarathna & Rohan Jayaratne & Lidia Morawska & Sachith Abeysundara & Rohan Weerasooriya & Luke D. Knibbs & Shyamali C. Dharmage & Duminda Yasaratne & Gayan Bowatte, 2021. "Ambient PM 2.5 and PM 10 Exposure and Respiratory Disease Hospitalization in Kandy, Sri Lanka," IJERPH, MDPI, vol. 18(18), pages 1-13, September.
    19. Aditya Goenka & Saqib Jafarey & William Pouliot, 2012. "Pollution, Mortality and Optimal Environmental Policy," Discussion Papers 12-05, Department of Economics, University of Birmingham.
    20. Yu Liu & Yong Guo & Changbing Wang & Weidong Li & Jinhua Lu & Songying Shen & Huimin Xia & Jianrong He & Xiu Qiu, 2015. "Association between Temperature Change and Outpatient Visits for Respiratory Tract Infections among Children in Guangzhou, China," IJERPH, MDPI, vol. 12(1), pages 1-16, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0259820. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.