IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v68y2012i3p661-671.html
   My bibliography  Save this article

Bayesian Effect Estimation Accounting for Adjustment Uncertainty

Author

Listed:
  • Chi Wang
  • Giovanni Parmigiani
  • Francesca Dominici

Abstract

No abstract is available for this item.

Suggested Citation

  • Chi Wang & Giovanni Parmigiani & Francesca Dominici, 2012. "Bayesian Effect Estimation Accounting for Adjustment Uncertainty," Biometrics, The International Biometric Society, vol. 68(3), pages 661-671, September.
  • Handle: RePEc:bla:biomet:v:68:y:2012:i:3:p:661-671
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2011.01731.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
    2. Koop, Gary & Tole, Lise, 2004. "Measuring the health effects of air pollution: to what extent can we really say that people are dying from bad air?," Journal of Environmental Economics and Management, Elsevier, vol. 47(1), pages 30-54, January.
    3. Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
    4. Roger D. Peng & Francesca Dominici & Thomas A. Louis, 2006. "Model choice in time series studies of air pollution and mortality," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(2), pages 179-203, March.
    5. Francesca Dominici & Jonathan M. Samet & Scott L. Zeger, 2000. "Combining evidence on air pollution and daily mortality from the 20 largest US cities: a hierarchical modelling strategy," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 163(3), pages 263-302.
    6. Francesca Dominici & Aidan M.C. Dermott & Trevor J. Hastie, 2004. "Improved Semiparametric Time Series Models of Air Pollution and Mortality," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 938-948, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Susan M. Shortreed & Ashkan Ertefaie, 2017. "Outcome‐adaptive lasso: Variable selection for causal inference," Biometrics, The International Biometric Society, vol. 73(4), pages 1111-1122, December.
    2. Adam A. Szpiro & Lianne Sheppard & Sara D. Adar & Joel D. Kaufman, 2014. "Estimating acute air pollution health effects from cohort study data," Biometrics, The International Biometric Society, vol. 70(1), pages 164-174, March.
    3. Corwin M. Zigler & Krista Watts & Robert W. Yeh & Yun Wang & Brent A. Coull & Francesca Dominici, 2013. "Model Feedback in Bayesian Propensity Score Estimation," Biometrics, The International Biometric Society, vol. 69(1), pages 263-273, March.
    4. Ander Wilson & Corwin M. Zigler & Chirag J. Patel & Francesca Dominici, 2018. "Model‐averaged confounder adjustment for estimating multivariate exposure effects with linear regression," Biometrics, The International Biometric Society, vol. 74(3), pages 1034-1044, September.
    5. Chi Wang & Francesca Dominici & Giovanni Parmigiani & Corwin Matthew Zigler, 2015. "Accounting for uncertainty in confounder and effect modifier selection when estimating average causal effects in generalized linear models," Biometrics, The International Biometric Society, vol. 71(3), pages 654-665, September.
    6. Mark P Little & Alexander G Kukush & Sergii V Masiuk & Sergiy Shklyar & Raymond J Carroll & Jay H Lubin & Deukwoo Kwon & Alina V Brenner & Mykola D Tronko & Kiyohiko Mabuchi & Tetiana I Bogdanova & Ma, 2014. "Impact of Uncertainties in Exposure Assessment on Estimates of Thyroid Cancer Risk among Ukrainian Children and Adolescents Exposed from the Chernobyl Accident," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-9, January.
    7. Chanmin Kim & Mauricio Tec & Corwin Zigler, 2023. "Bayesian nonparametric adjustment of confounding," Biometrics, The International Biometric Society, vol. 79(4), pages 3252-3265, December.
    8. R. Gutman & D.B. Rubin, 2012. "Analyses that Inform Policy Decisions," Biometrics, The International Biometric Society, vol. 68(3), pages 671-675, September.
    9. Joseph Antonelli & Matthew Cefalu & Nathan Palmer & Denis Agniel, 2018. "Doubly robust matching estimators for high dimensional confounding adjustment," Biometrics, The International Biometric Society, vol. 74(4), pages 1171-1179, December.
    10. Paul Gustafson, 2015. "Discussion of “On Bayesian Estimation of Marginal Structural Models”," Biometrics, The International Biometric Society, vol. 71(2), pages 291-293, June.
    11. Paola Berchialla & Veronica Sciannameo & Sara Urru & Corrado Lanera & Danila Azzolina & Dario Gregori & Ileana Baldi, 2021. "Adjustment for Baseline Covariates to Increase Efficiency in RCTs with Binary Endpoint: A Comparison of Bayesian and Frequentist Approaches," IJERPH, MDPI, vol. 18(15), pages 1-9, July.
    12. Jennifer F. Bobb & Maricela F. Cruz & Stephen J. Mooney & Adam Drewnowski & David Arterburn & Andrea J. Cook, 2022. "Accounting for spatial confounding in epidemiological studies with individual‐level exposures: An exposure‐penalized spline approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1271-1293, July.
    13. Talbot Denis & Lefebvre Geneviève & Atherton Juli, 2015. "The Bayesian Causal Effect Estimation Algorithm," Journal of Causal Inference, De Gruyter, vol. 3(2), pages 207-236, September.
    14. Matthew Cefalu & Francesca Dominici & Nils Arvold & Giovanni Parmigiani, 2017. "Model averaged double robust estimation," Biometrics, The International Biometric Society, vol. 73(2), pages 410-421, June.
    15. Georgia Papadogeorgou, 2022. "Discussion on “Spatial+: a novel approach to spatial confounding” by Emiko Dupont, Simon N. Wood, and Nicole H. Augustin," Biometrics, The International Biometric Society, vol. 78(4), pages 1305-1308, December.
    16. Antonelli Joseph & Cefalu Matthew, 2020. "Averaging causal estimators in high dimensions," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 92-107, January.
    17. Ander Wilson & Brian J. Reich, 2014. "Confounder selection via penalized credible regions," Biometrics, The International Biometric Society, vol. 70(4), pages 852-861, December.
    18. Agboola, Oluwagbenga David & Yu, Han, 2023. "Neighborhood-based cross fitting approach to treatment effects with high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).
    19. Lefebvre, Geneviève & Atherton, Juli & Talbot, Denis, 2014. "The effect of the prior distribution in the Bayesian Adjustment for Confounding algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 227-240.
    20. M.J. Daniels & C. Wang & B.H. Marcus, 2014. "Fully Bayesian inference under ignorable missingness in the presence of auxiliary covariates," Biometrics, The International Biometric Society, vol. 70(1), pages 62-72, March.
    21. Brandon Koch & David M. Vock & Julian Wolfson, 2018. "Covariate selection with group lasso and doubly robust estimation of causal effects," Biometrics, The International Biometric Society, vol. 74(1), pages 8-17, March.
    22. Xun Lu, 2015. "A Covariate Selection Criterion for Estimation of Treatment Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 506-522, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. X. Pautrel, 2008. "Reconsidering the Impact of the Environment on Long-run Growth when Pollution Influences Health and Agents have a Finite-lifetime," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 40(1), pages 37-52, May.
    2. Joshua P. Keller & Adam A. Szpiro, 2020. "Selecting a scale for spatial confounding adjustment," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1121-1143, June.
    3. Adam A. Szpiro & Lianne Sheppard & Sara D. Adar & Joel D. Kaufman, 2014. "Estimating acute air pollution health effects from cohort study data," Biometrics, The International Biometric Society, vol. 70(1), pages 164-174, March.
    4. Leigh Fisher & Jon Wakefield & Cici Bauer & Steve Self, 2017. "Time series modeling of pathogen-specific disease probabilities with subsampled data," Biometrics, The International Biometric Society, vol. 73(1), pages 283-293, March.
    5. Joshua Graff Zivin & Matthew Neidell, 2013. "Environment, Health, and Human Capital," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 689-730, September.
    6. Xunfeng Yang & Lianfa Li & Jinfeng Wang & Jixia Huang & Shijun Lu, 2015. "Cardiovascular Mortality Associated with Low and High Temperatures: Determinants of Inter-Region Vulnerability in China," IJERPH, MDPI, vol. 12(6), pages 1-16, May.
    7. Tong Liu & Guojun He & Alexis Lau, 2018. "Avoidance behavior against air pollution: evidence from online search indices for anti-PM2.5 masks and air filters in Chinese cities," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(2), pages 325-363, April.
    8. Aditya Goenka & Saqib Jafarey & William Pouliot, 2012. "Pollution, Mortality and Optimal Environmental Policy," Discussion Papers 12-05, Department of Economics, University of Birmingham.
    9. Roger D. Peng & Francesca Dominici & Thomas A. Louis, 2006. "Model choice in time series studies of air pollution and mortality," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(2), pages 179-203, March.
    10. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    11. Anne Musson & Damien Rousselière, 2020. "Exploring the effect of crisis on cooperatives: a Bayesian performance analysis of French craftsmen cooperatives," Applied Economics, Taylor & Francis Journals, vol. 52(25), pages 2657-2678, May.
    12. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    13. Louis Anthony (Tony) Cox, 2012. "Reassessing the Human Health Benefits from Cleaner Air," Risk Analysis, John Wiley & Sons, vol. 32(5), pages 816-829, May.
    14. Harsh Parikh & Carlos Varjao & Louise Xu & Eric Tchetgen Tchetgen, 2022. "Validating Causal Inference Methods," Papers 2202.04208, arXiv.org, revised Jul 2022.
    15. Deborah Gefang & Gary Koop & Aubrey Poon, 2019. "Variational Bayesian Inference in Large Vector Autoregressions with Hierarchical Shrinkage," Discussion Papers in Economics 19/05, Division of Economics, School of Business, University of Leicester.
    16. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    17. Hamidou Jawara, 2020. "Access to savings and household welfare evidence from a household survey in The Gambia," African Development Review, African Development Bank, vol. 32(2), pages 138-149, June.
    18. Wei, Kecheng & Qin, Guoyou & Zhang, Jiajia & Sui, Xuemei, 2022. "Doubly robust estimation in causal inference with missing outcomes: With an application to the Aerobics Center Longitudinal Study," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    19. William C. Horrace & Hyunseok Jung & Yi Yang, 2023. "The conditional mode in parametric frontier models," Journal of Productivity Analysis, Springer, vol. 60(3), pages 333-343, December.
    20. David Kohns & Tibor Szendrei, 2021. "Decoupling Shrinkage and Selection for the Bayesian Quantile Regression," Papers 2107.08498, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:68:y:2012:i:3:p:661-671. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.