IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v70y2014i1p164-174.html
   My bibliography  Save this article

Estimating acute air pollution health effects from cohort study data

Author

Listed:
  • Adam A. Szpiro
  • Lianne Sheppard
  • Sara D. Adar
  • Joel D. Kaufman

Abstract

No abstract is available for this item.

Suggested Citation

  • Adam A. Szpiro & Lianne Sheppard & Sara D. Adar & Joel D. Kaufman, 2014. "Estimating acute air pollution health effects from cohort study data," Biometrics, The International Biometric Society, vol. 70(1), pages 164-174, March.
  • Handle: RePEc:bla:biomet:v:70:y:2014:i:1:p:164-174
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/biom.12125
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Francesca Dominici & Lianne Sheppard & Merlise Clyde, 2003. "Health Effects of Air Pollution: A Statistical Review," International Statistical Review, International Statistical Institute, vol. 71(2), pages 243-276, August.
    2. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    3. Chi Wang & Giovanni Parmigiani & Francesca Dominici, 2012. "Bayesian Effect Estimation Accounting for Adjustment Uncertainty," Biometrics, The International Biometric Society, vol. 68(3), pages 661-671, September.
    4. Chi Wang & Giovanni Parmigiani & Francesca Dominici, 2012. "Rejoinder: Bayesian Effect Estimation Accounting for Adjustment Uncertainty," Biometrics, The International Biometric Society, vol. 68(3), pages 680-686, September.
    5. Roger D. Peng & Francesca Dominici & Thomas A. Louis, 2006. "Model choice in time series studies of air pollution and mortality," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(2), pages 179-203, March.
    6. Hodges, James S. & Reich, Brian J., 2010. "Adding Spatially-Correlated Errors Can Mess Up the Fixed Effect You Love," The American Statistician, American Statistical Association, vol. 64(4), pages 325-334.
    7. Francesca Dominici & Aidan M.C. Dermott & Trevor J. Hastie, 2004. "Improved Semiparametric Time Series Models of Air Pollution and Mortality," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 938-948, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joshua P. Keller & Adam A. Szpiro, 2020. "Selecting a scale for spatial confounding adjustment," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1121-1143, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joshua P. Keller & Adam A. Szpiro, 2020. "Selecting a scale for spatial confounding adjustment," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1121-1143, June.
    2. Jennifer F. Bobb & Maricela F. Cruz & Stephen J. Mooney & Adam Drewnowski & David Arterburn & Andrea J. Cook, 2022. "Accounting for spatial confounding in epidemiological studies with individual‐level exposures: An exposure‐penalized spline approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1271-1293, July.
    3. Georgia Papadogeorgou, 2022. "Discussion on “Spatial+: a novel approach to spatial confounding” by Emiko Dupont, Simon N. Wood, and Nicole H. Augustin," Biometrics, The International Biometric Society, vol. 78(4), pages 1305-1308, December.
    4. Ander Wilson & Corwin M. Zigler & Chirag J. Patel & Francesca Dominici, 2018. "Model‐averaged confounder adjustment for estimating multivariate exposure effects with linear regression," Biometrics, The International Biometric Society, vol. 74(3), pages 1034-1044, September.
    5. Ander Wilson & Brian J. Reich, 2014. "Confounder selection via penalized credible regions," Biometrics, The International Biometric Society, vol. 70(4), pages 852-861, December.
    6. Xun Lu, 2015. "A Covariate Selection Criterion for Estimation of Treatment Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 506-522, October.
    7. Talbot Denis & Lefebvre Geneviève & Atherton Juli, 2015. "The Bayesian Causal Effect Estimation Algorithm," Journal of Causal Inference, De Gruyter, vol. 3(2), pages 207-236, September.
    8. Susan M. Shortreed & Ashkan Ertefaie, 2017. "Outcome‐adaptive lasso: Variable selection for causal inference," Biometrics, The International Biometric Society, vol. 73(4), pages 1111-1122, December.
    9. Lefebvre, Geneviève & Atherton, Juli & Talbot, Denis, 2014. "The effect of the prior distribution in the Bayesian Adjustment for Confounding algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 227-240.
    10. M.J. Daniels & C. Wang & B.H. Marcus, 2014. "Fully Bayesian inference under ignorable missingness in the presence of auxiliary covariates," Biometrics, The International Biometric Society, vol. 70(1), pages 62-72, March.
    11. Antonelli Joseph & Cefalu Matthew, 2020. "Averaging causal estimators in high dimensions," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 92-107, January.
    12. Chi Wang & Francesca Dominici & Giovanni Parmigiani & Corwin Matthew Zigler, 2015. "Accounting for uncertainty in confounder and effect modifier selection when estimating average causal effects in generalized linear models," Biometrics, The International Biometric Society, vol. 71(3), pages 654-665, September.
    13. Brandon Koch & David M. Vock & Julian Wolfson, 2018. "Covariate selection with group lasso and doubly robust estimation of causal effects," Biometrics, The International Biometric Society, vol. 74(1), pages 8-17, March.
    14. Paola Berchialla & Veronica Sciannameo & Sara Urru & Corrado Lanera & Danila Azzolina & Dario Gregori & Ileana Baldi, 2021. "Adjustment for Baseline Covariates to Increase Efficiency in RCTs with Binary Endpoint: A Comparison of Bayesian and Frequentist Approaches," IJERPH, MDPI, vol. 18(15), pages 1-9, July.
    15. Agboola, Oluwagbenga David & Yu, Han, 2023. "Neighborhood-based cross fitting approach to treatment effects with high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).
    16. Cici Bauer & Jon Wakefield, 2018. "Stratified space–time infectious disease modelling, with an application to hand, foot and mouth disease in China," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1379-1398, November.
    17. Paul Gustafson, 2015. "Discussion of “On Bayesian Estimation of Marginal Structural Models”," Biometrics, The International Biometric Society, vol. 71(2), pages 291-293, June.
    18. Leigh Fisher & Jon Wakefield & Cici Bauer & Steve Self, 2017. "Time series modeling of pathogen-specific disease probabilities with subsampled data," Biometrics, The International Biometric Society, vol. 73(1), pages 283-293, March.
    19. Matthew Cefalu & Francesca Dominici & Nils Arvold & Giovanni Parmigiani, 2017. "Model averaged double robust estimation," Biometrics, The International Biometric Society, vol. 73(2), pages 410-421, June.
    20. Xunfeng Yang & Lianfa Li & Jinfeng Wang & Jixia Huang & Shijun Lu, 2015. "Cardiovascular Mortality Associated with Low and High Temperatures: Determinants of Inter-Region Vulnerability in China," IJERPH, MDPI, vol. 12(6), pages 1-16, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:70:y:2014:i:1:p:164-174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.