Model choice in time series studies of air pollution and mortality
Author
Abstract
Suggested Citation
DOI: 10.1111/j.1467-985X.2006.00410.x
Download full text from publisher
References listed on IDEAS
- Marx, Brian D. & Eilers, Paul H. C., 1998. "Direct generalized additive modeling with penalized likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 28(2), pages 193-209, August.
- S. N. Wood, 2000. "Modelling and smoothing parameter estimation with multiple quadratic penalties," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 413-428.
- P. J. Everson & C. N. Morris, 2000. "Inference for multivariate normal hierarchical models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 399-412.
- Unknown, 1986. "Letters," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 1(4), pages 1-9.
- Rice, John, 1986. "Convergence rates for partially splined models," Statistics & Probability Letters, Elsevier, vol. 4(4), pages 203-208, June.
- Francesca Dominici & Jonathan M. Samet & Scott L. Zeger, 2000. "Combining evidence on air pollution and daily mortality from the 20 largest US cities: a hierarchical modelling strategy," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 163(3), pages 263-302.
- Francesca Dominici & Aidan M.C. Dermott & Trevor J. Hastie, 2004. "Improved Semiparametric Time Series Models of Air Pollution and Mortality," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 938-948, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Baccini, Michela & Biggeri, Annibale & Lagazio, Corrado & Lertxundi, Aitana & Saez, Marc, 2007. "Parametric and semi-parametric approaches in the analysis of short-term effects of air pollution on health," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4324-4336, May.
- Häggström, Jenny, 2013. "Bandwidth selection for backfitting estimation of semiparametric additive models: A simulation study," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 136-148.
- Linton, Oliver, 1995.
"Second Order Approximation in the Partially Linear Regression Model,"
Econometrica, Econometric Society, vol. 63(5), pages 1079-1112, September.
- Oliver Linton, 1993. "Second Order Approximation in the Partially Linear Regression Model," Cowles Foundation Discussion Papers 1065, Cowles Foundation for Research in Economics, Yale University.
- Simon N. Wood & Natalya Pya & Benjamin Säfken, 2016. "Smoothing Parameter and Model Selection for General Smooth Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1548-1563, October.
- Strasak, Alexander M. & Umlauf, Nikolaus & Pfeiffer, Ruth M. & Lang, Stefan, 2011. "Comparing penalized splines and fractional polynomials for flexible modelling of the effects of continuous predictor variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1540-1551, April.
- Wang Q. & Linton O. & Hardle W., 2004.
"Semiparametric Regression Analysis With Missing Response at Random,"
Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 334-345, January.
- Wolfgang Härdle & Oliver Linton & Wang, Qihua, 2003. "Semiparametric regression analysis with missing response at random," CeMMAP working papers CWP11/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Xin Fang & Bo Fang & Chunfang Wang & Tian Xia & Matteo Bottai & Fang Fang & Yang Cao, 2019. "Comparison of Frequentist and Bayesian Generalized Additive Models for Assessing the Association between Daily Exposure to Fine Particles and Respiratory Mortality: A Simulation Study," IJERPH, MDPI, vol. 16(5), pages 1-20, March.
- Guang Cheng & Hao Zhang & Zuofeng Shang, 2015. "Sparse and efficient estimation for partial spline models with increasing dimension," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(1), pages 93-127, February.
- Morteza Amini & Mahdi Roozbeh & Nur Anisah Mohamed, 2024. "Separation of the Linear and Nonlinear Covariates in the Sparse Semi-Parametric Regression Model in the Presence of Outliers," Mathematics, MDPI, vol. 12(2), pages 1-17, January.
- Belitz, Christiane & Lang, Stefan, 2008. "Simultaneous selection of variables and smoothing parameters in structured additive regression models," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 61-81, September.
- Atak, Alev & Linton, Oliver & Xiao, Zhijie, 2011.
"A semiparametric panel model for unbalanced data with application to climate change in the United Kingdom,"
Journal of Econometrics, Elsevier, vol. 164(1), pages 92-115, September.
- Alev Atak & Oliver Linton & Zhijie Xiao, 2010. "A Semiparametric Panel Model for unbalanced data with Application to Climate Change in the United Kingdom," Boston College Working Papers in Economics 762, Boston College Department of Economics.
- Alev Atak & Oliver Linton & Zhijie Xiao, 2011. "A semiparametric panel model for unbalanced data with application to climate change in the United Kingdom," Post-Print hal-00844810, HAL.
- Atak, Alev & Linton, Oliver B. & Xiao, Zhijie, 2010. "A Semiparametric Panel Model for Unbalanced Data with Application to Climate Change in the United Kingdom," MPRA Paper 22079, University Library of Munich, Germany.
- Sung Wan Han & Rickson C. Mesquita & Theresa M. Busch & Mary E. Putt, 2014. "A method for choosing the smoothing parameter in a semi-parametric model for detecting change-points in blood flow," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(1), pages 26-45, January.
- Wang, Xiaoguang & Lu, Dawei & Song, Lixin, 2013. "Statistical inference for partially linear stochastic models with heteroscedastic errors," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 150-160.
- Chi Wang & Giovanni Parmigiani & Francesca Dominici, 2012. "Bayesian Effect Estimation Accounting for Adjustment Uncertainty," Biometrics, The International Biometric Society, vol. 68(3), pages 661-671, September.
- repec:jss:jstsof:26:i07 is not listed on IDEAS
- Haotian Chen & Xibin Zhang, 2014. "Bayesian Estimation for Partially Linear Models with an Application to Household Gasoline Consumption," Monash Econometrics and Business Statistics Working Papers 28/14, Monash University, Department of Econometrics and Business Statistics.
- Gerhard Tutz & Harald Binder, 2006. "Generalized Additive Modeling with Implicit Variable Selection by Likelihood-Based Boosting," Biometrics, The International Biometric Society, vol. 62(4), pages 961-971, December.
- Anne-Sophie Krah & Zoran Nikolić & Ralf Korn, 2020. "Machine Learning in Least-Squares Monte Carlo Proxy Modeling of Life Insurance Companies," Risks, MDPI, vol. 8(1), pages 1-79, February.
- Ibacache-Pulgar, Germán & Paula, Gilberto A., 2011. "Local influence for Student-t partially linear models," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1462-1478, March.
- Gao, Jiti, 1994. "Asymptotic theory for partly linear models," MPRA Paper 40452, University Library of Munich, Germany, revised 02 Dec 1994.
- Hardle, Wolfgang & LIang, Hua & Gao, Jiti, 2000. "Partially linear models," MPRA Paper 39562, University Library of Munich, Germany, revised 01 Sep 2000.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:169:y:2006:i:2:p:179-203. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.