IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0039423.html
   My bibliography  Save this article

Model Selection in Time Series Studies of Influenza-Associated Mortality

Author

Listed:
  • Xi-Ling Wang
  • Lin Yang
  • King-Pan Chan
  • Susan S Chiu
  • Kwok-Hung Chan
  • J S Malik Peiris
  • Chit-Ming Wong

Abstract

Background: Poisson regression modeling has been widely used to estimate influenza-associated disease burden, as it has the advantage of adjusting for multiple seasonal confounders. However, few studies have discussed how to judge the adequacy of confounding adjustment. This study aims to compare the performance of commonly adopted model selection criteria in terms of providing a reliable and valid estimate for the health impact of influenza. Methods: We assessed four model selection criteria: quasi Akaike information criterion (QAIC), quasi Bayesian information criterion (QBIC), partial autocorrelation functions of residuals (PACF), and generalized cross-validation (GCV), by separately applying them to select the Poisson model best fitted to the mortality datasets that were simulated under the different assumptions of seasonal confounding. The performance of these criteria was evaluated by the bias and root-mean-square error (RMSE) of estimates from the pre-determined coefficients of influenza proxy variable. These four criteria were subsequently applied to an empirical hospitalization dataset to confirm the findings of simulation study. Results: GCV consistently provided smaller biases and RMSEs for the influenza coefficient estimates than QAIC, QBIC and PACF, under the different simulation scenarios. Sensitivity analysis of different pre-determined influenza coefficients, study periods and lag weeks showed that GCV consistently outperformed the other criteria. Similar results were found in applying these selection criteria to estimate influenza-associated hospitalization. Conclusions: GCV criterion is recommended for selection of Poisson models to estimate influenza-associated mortality and morbidity burden with proper adjustment for confounding. These findings shall help standardize the Poisson modeling approach for influenza disease burden studies.

Suggested Citation

  • Xi-Ling Wang & Lin Yang & King-Pan Chan & Susan S Chiu & Kwok-Hung Chan & J S Malik Peiris & Chit-Ming Wong, 2012. "Model Selection in Time Series Studies of Influenza-Associated Mortality," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-7, June.
  • Handle: RePEc:plo:pone00:0039423
    DOI: 10.1371/journal.pone.0039423
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0039423
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0039423&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0039423?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zeileis, Achim & Kleiber, Christian & Jackman, Simon, 2008. "Regression Models for Count Data in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i08).
    2. Thompson, W.W. & Moore, M.R. & Weintraub, E. & Cheng, P.-Y. & Jin, X. & Bridges, C.B. & Bresee, J.S. & Shay, D.K., 2009. "Estimating influenza-associated deaths in the United States," American Journal of Public Health, American Public Health Association, vol. 99(S2), pages 225-230.
    3. Andrew Rambaut & Oliver G. Pybus & Martha I. Nelson & Cecile Viboud & Jeffery K. Taubenberger & Edward C. Holmes, 2008. "The genomic and epidemiological dynamics of human influenza A virus," Nature, Nature, vol. 453(7195), pages 615-619, May.
    4. Roger D. Peng & Francesca Dominici & Thomas A. Louis, 2006. "Model choice in time series studies of air pollution and mortality," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(2), pages 179-203, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iara da Silva & Caroline Fernanda Hei Wikuats & Elizabeth Mie Hashimoto & Leila Droprinchinski Martins, 2022. "Effects of Environmental and Socioeconomic Inequalities on Health Outcomes: A Multi-Region Time-Series Study," IJERPH, MDPI, vol. 19(24), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunquan Zhang & Chuanhua Yu & Jin Yang & Lan Zhang & Fangfang Cui, 2017. "Diurnal Temperature Range in Relation to Daily Mortality and Years of Life Lost in Wuhan, China," IJERPH, MDPI, vol. 14(8), pages 1-11, August.
    2. Robert J. R. Elliott & Ingmar Schumacher & Cees Withagen, 2020. "Suggestions for a Covid-19 Post-Pandemic Research Agenda in Environmental Economics," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 1187-1213, August.
    3. Totterman, Stephen, 2021. "Vehicle-based recreation and compliance for three beaches in northern New South Wales," OSF Preprints ja8h6, Center for Open Science.
    4. Jong-Hyun Kim & Yong-Gil Lee, 2021. "Factors of Collaboration Affecting the Performance of Alternative Energy Patents in South Korea from 2010 to 2017," Sustainability, MDPI, vol. 13(18), pages 1-25, September.
    5. Olga Alipova & Lada Litvinova & Andrey Lovakov & Maria Yudkevich, 2018. "Inbreds And Non-Inbreds Among Russian Academics: Short-Term Similarity And Long-Term Differences In Productivity," HSE Working papers WP BRP 48/EDU/2018, National Research University Higher School of Economics.
    6. Christian Kleiber & Achim Zeileis, 2016. "Visualizing Count Data Regressions Using Rootograms," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 296-303, July.
    7. Kin Keung Lai & Ming Wang & Jiangze Du, 2019. "Modeling and Predicting Infectious Diseases Cases with Climatic Factors in Hong Kong," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 23(1), pages 17147-17150, November.
    8. Kai Luo & Wenjing Li & Ruiming Zhang & Runkui Li & Qun Xu & Yang Cao, 2016. "Ambient Fine Particulate Matter Exposure and Risk of Cardiovascular Mortality: Adjustment of the Meteorological Factors," IJERPH, MDPI, vol. 13(11), pages 1-17, November.
    9. Sewando, Ponsian T. & Mdoe, N. Y. S. & Mutabazi, K. D. S, 2011. "Farmers’ preferential choice decisions to alternative cassava value chain strands in Morogoro rural district, Tanzania," MPRA Paper 29797, University Library of Munich, Germany.
    10. Merl, Robert & Palan, Stefan & Schmidt, Dominik & Stöckl, Thomas, 2023. "Insider trading regulation and trader migration," Journal of Financial Markets, Elsevier, vol. 66(C).
    11. Sean J. Blamires & Cheng-Hui Lai & Ren-Chung Cheng & Chen-Pan Liao & Pao-Sheng Shen & I-Min Tso, 2012. "Body spot coloration of a nocturnal sit-and-wait predator visually lures prey," Behavioral Ecology, International Society for Behavioral Ecology, vol. 23(1), pages 69-74.
    12. Lawrence N Kazembe, 2013. "A Bayesian Two Part Model Applied to Analyze Risk Factors of Adult Mortality with Application to Data from Namibia," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-10, September.
    13. Erich Striessnig & Elke Loichinger, 2015. "Future differential vulnerability to natural disasters by level of education," Vienna Yearbook of Population Research, Vienna Institute of Demography (VID) of the Austrian Academy of Sciences in Vienna, vol. 13(1), pages 221-240.
    14. Joseph A. Lewnard & Vennis Hong & Jeniffer S. Kim & Sally F. Shaw & Bruno Lewin & Harpreet Takhar & Marc Lipsitch & Sara Y. Tartof, 2023. "Increased vaccine sensitivity of an emerging SARS-CoV-2 variant," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Ina Falfán & Luis Zambrano, 2023. "Lacustrine Urban Blue Spaces: Low Availability and Inequitable Distribution in the Most Populated Cities in Mexico," Land, MDPI, vol. 12(1), pages 1-18, January.
    16. Gerike, Regine & Gehlert, Tina & Leisch, Friedrich, 2015. "Time use in travel surveys and time use surveys – Two sides of the same coin?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 76(C), pages 4-24.
    17. Guarino, Ernestino de Souza Gomes & Barbosa, Ana Márcia & Waechter, Jorge Luiz, 2012. "Occurrence and abundance models of threatened plant species: Applications to mitigate the impact of hydroelectric power dams," Ecological Modelling, Elsevier, vol. 230(C), pages 22-33.
    18. Evgenii V. Gilenko & Elena A. Mironova, 2017. "Modern claim frequency and claim severity models: An application to the Russian motor own damage insurance market," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1311097-131, January.
    19. Livio Finos & Fortunato Pesarin, 2020. "On zero-inflated permutation testing and some related problems," Statistical Papers, Springer, vol. 61(5), pages 2157-2174, October.
    20. Montero, José-María, 2018. "Geostatistics: Unde venis et quo vadis? /Geoestadística:¿De dónde vienes y a dónde vas?," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 36, pages 81-106, Enero.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0039423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.