IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0105018.html
   My bibliography  Save this article

iNitro-Tyr: Prediction of Nitrotyrosine Sites in Proteins with General Pseudo Amino Acid Composition

Author

Listed:
  • Yan Xu
  • Xin Wen
  • Li-Shu Wen
  • Ling-Yun Wu
  • Nai-Yang Deng
  • Kuo-Chen Chou

Abstract

Nitrotyrosine is one of the post-translational modifications (PTMs) in proteins that occurs when their tyrosine residue is nitrated. Compared with healthy people, a remarkably increased level of nitrotyrosine is detected in those suffering from rheumatoid arthritis, septic shock, and coeliac disease. Given an uncharacterized protein sequence that contains many tyrosine residues, which one of them can be nitrated and which one cannot? This is a challenging problem, not only directly related to in-depth understanding the PTM’s mechanism but also to the nitrotyrosine-based drug development. Particularly, with the avalanche of protein sequences generated in the postgenomic age, it is highly desired to develop a high throughput tool in this regard. Here, a new predictor called “iNitro-Tyr” was developed by incorporating the position-specific dipeptide propensity into the general pseudo amino acid composition for discriminating the nitrotyrosine sites from non-nitrotyrosine sites in proteins. It was demonstrated via the rigorous jackknife tests that the new predictor not only can yield higher success rate but also is much more stable and less noisy. A web-server for iNitro-Tyr is accessible to the public at http://app.aporc.org/iNitro-Tyr/. For the convenience of most experimental scientists, we have further provided a protocol of step-by-step guide, by which users can easily get their desired results without the need to follow the complicated mathematics that were presented in this paper just for the integrity of its development process. It has not escaped our notice that the approach presented here can be also used to deal with the other PTM sites in proteins.

Suggested Citation

  • Yan Xu & Xin Wen & Li-Shu Wen & Ling-Yun Wu & Nai-Yang Deng & Kuo-Chen Chou, 2014. "iNitro-Tyr: Prediction of Nitrotyrosine Sites in Proteins with General Pseudo Amino Acid Composition," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-10, August.
  • Handle: RePEc:plo:pone00:0105018
    DOI: 10.1371/journal.pone.0105018
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0105018
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0105018&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0105018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kuo Chen Chou, 2020. "How the Artificial Intelligence Tool iRNA-PseU is Working in Predicting the RNA Pseudouridine Sites?," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 24(2), pages 18055-18064, January.
    2. Abdollah Dehzangi & Yosvany López & Sunil Pranit Lal & Ghazaleh Taherzadeh & Abdul Sattar & Tatsuhiko Tsunoda & Alok Sharma, 2018. "Improving succinylation prediction accuracy by incorporating the secondary structure via helix, strand and coil, and evolutionary information from profile bigrams," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-16, February.
    3. Kuo-Chen Chou, 2020. "Showcase to Illustrate How the Web-Server iKcr-PseEns is Working," International Journal of Sciences, Office ijSciences, vol. 9(01), pages 85-95, January.
    4. Kuo-Chen Chou, 2020. "The pLoc_bal-mGneg Predictor is a Powerful Web-Server for Identifying the Subcellular Localization of Gram-Negative Bacterial Proteins based on their Sequences Information Alone," International Journal of Sciences, Office ijSciences, vol. 9(01), pages 27-34, January.
    5. Sabit Ahmed & Afrida Rahman & Md Al Mehedi Hasan & Md Khaled Ben Islam & Julia Rahman & Shamim Ahmad, 2021. "predPhogly-Site: Predicting phosphoglycerylation sites by incorporating probabilistic sequence-coupling information into PseAAC and addressing data imbalance," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-17, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0105018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.