IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007341.html
   My bibliography  Save this article

A computational account of threat-related attentional bias

Author

Listed:
  • Toby Wise
  • Jochen Michely
  • Peter Dayan
  • Raymond J Dolan

Abstract

Visual selective attention acts as a filter on perceptual information, facilitating learning and inference about important events in an agent’s environment. A role for visual attention in reward-based decisions has previously been demonstrated, but it remains unclear how visual attention is recruited during aversive learning, particularly when learning about multiple stimuli concurrently. This question is of particular importance in psychopathology, where enhanced attention to threat is a putative feature of pathological anxiety. Using an aversive reversal learning task that required subjects to learn, and exploit, predictions about multiple stimuli, we show that the allocation of visual attention is influenced significantly by aversive value but not by uncertainty. Moreover, this relationship is bidirectional in that attention biases value updates for attended stimuli, resulting in heightened value estimates. Our findings have implications for understanding biased attention in psychopathology and support a role for learning in the expression of threat-related attentional biases in anxiety.Author summary: To make inferences and learn efficiently in the face of a multiplicity of stimuli we need to allocate attention preferentially to those that are most motivationally relevant. It is unclear how this is achieved in aversive environments. We investigated how value (the likelihood of an unpleasant event) and uncertainty (akin to ignorance about its probability) influence visual attention during aversive learning. Our results show that attention is influenced by value but not by uncertainty. Attention in turn results in heightened value estimates for attended stimuli. The findings have implications for understanding the development of pathological threat-related attentional biases that are a feature of anxiety disorders.

Suggested Citation

  • Toby Wise & Jochen Michely & Peter Dayan & Raymond J Dolan, 2019. "A computational account of threat-related attentional bias," PLOS Computational Biology, Public Library of Science, vol. 15(10), pages 1-21, October.
  • Handle: RePEc:plo:pcbi00:1007341
    DOI: 10.1371/journal.pcbi.1007341
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007341
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007341&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007341?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Athina Tzovara & Christoph W Korn & Dominik R Bach, 2018. "Human Pavlovian fear conditioning conforms to probabilistic learning," PLOS Computational Biology, Public Library of Science, vol. 14(8), pages 1-21, August.
    2. repec:cup:judgdm:v:3:y:2008:i::p:396-403 is not listed on IDEAS
    3. Archy O. de Berker & Robb B. Rutledge & Christoph Mathys & Louise Marshall & Gemma F. Cross & Raymond J. Dolan & Sven Bestmann, 2016. "Computations of uncertainty mediate acute stress responses in humans," Nature Communications, Nature, vol. 7(1), pages 1-11, April.
    4. Germain Lefebvre & Maël Lebreton & Florent Meyniel & Sacha Bourgeois-Gironde & Stefano Palminteri, 2017. "Behavioural and neural characterization of optimistic reinforcement learning," Nature Human Behaviour, Nature, vol. 1(4), pages 1-9, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chih-Chung Ting & Nahuel Salem-Garcia & Stefano Palminteri & Jan B. Engelmann & Maël Lebreton, 2023. "Neural and computational underpinnings of biased confidence in human reinforcement learning," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Corgnet, Brice & Hernán-González, Roberto & Kujal, Praveen, 2020. "On booms that never bust: Ambiguity in experimental asset markets with bubbles," Journal of Economic Dynamics and Control, Elsevier, vol. 110(C).
    3. Payam Piray & Nathaniel D Daw, 2020. "A simple model for learning in volatile environments," PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-26, July.
    4. Johann Lussange & Stefano Vrizzi & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2023. "Stock Price Formation: Precepts from a Multi-Agent Reinforcement Learning Model," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1523-1544, April.
    5. Johann Lussange & Ivan Lazarevich & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2021. "Modelling Stock Markets by Multi-agent Reinforcement Learning," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 113-147, January.
    6. Daniel S Kluger & Nico Broers & Marlen A Roehe & Moritz F Wurm & Niko A Busch & Ricarda I Schubotz, 2020. "Exploitation of local and global information in predictive processing," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-17, April.
    7. Tapia, Carlos & Coulton, Jeff & Saydam, Serkan, 2020. "Using entropy to assess dynamic behaviour of long-term copper price," Resources Policy, Elsevier, vol. 66(C).
    8. Sudipta Mukherjee, 2022. "Consumer altruism and risk taking: why do altruistic consumers take more risks?," International Review on Public and Nonprofit Marketing, Springer;International Association of Public and Non-Profit Marketing, vol. 19(4), pages 781-803, December.
    9. Elizabeth Lomas & Julie McLeod, 2017. "Engaging with change: Information and communication technology professionals’ perspectives on change in the context of the ‘Brexit’ vote," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-26, November.
    10. Daniel J. Benjamin, 2018. "Errors in Probabilistic Reasoning and Judgment Biases," NBER Working Papers 25200, National Bureau of Economic Research, Inc.
    11. Brice Corgnet & Simon Gaechter & Roberto Hernán González, 2020. "Working too much for too little: stochastic rewards cause work addiction," Working Papers 2007, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
    12. Hu Sun & Yun Wang, 2019. "Do On-lookers See Most of the Game? Evaluating Job-seekers' Competitiveness of Oneself versus of Others in a Labor Market Experiment," Working Papers 2019-07-11, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    13. Filip Gesiarz & Donal Cahill & Tali Sharot, 2019. "Evidence accumulation is biased by motivation: A computational account," PLOS Computational Biology, Public Library of Science, vol. 15(6), pages 1-15, June.
    14. Tsutomu Harada, 2021. "Three heads are better than two: Comparing learning properties and performances across individuals, dyads, and triads through a computational approach," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-16, June.
    15. Nura Sidarus & Stefano Palminteri & Valérian Chambon, 2019. "Cost-benefit trade-offs in decision-making and learning," PLOS Computational Biology, Public Library of Science, vol. 15(9), pages 1-28, September.
    16. Stefano Palminteri & Germain Lefebvre & Emma J Kilford & Sarah-Jayne Blakemore, 2017. "Confirmation bias in human reinforcement learning: Evidence from counterfactual feedback processing," PLOS Computational Biology, Public Library of Science, vol. 13(8), pages 1-22, August.
    17. Johann Lussange & Boris Gutkin, 2023. "Order book regulatory impact on stock market quality: a multi-agent reinforcement learning perspective," Papers 2302.04184, arXiv.org.
    18. Xinyi Li & Yinchuan Li & Yuancheng Zhan & Xiao-Yang Liu, 2019. "Optimistic Bull or Pessimistic Bear: Adaptive Deep Reinforcement Learning for Stock Portfolio Allocation," Papers 1907.01503, arXiv.org.
    19. Aurélien Nioche & Basile Garcia & Germain Lefebvre & Thomas Boraud & Nicolas P. Rougier & Sacha Bourgeois-Gironde, 2019. "Coordination over a unique medium of exchange under information scarcity," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-11, December.
    20. Giovanni Leone & Charlotte Postel & Alison Mary & Florence Fraisse & Thomas Vallée & Fausto Viader & Vincent Sayette & Denis Peschanski & Jaques Dayan & Francis Eustache & Pierre Gagnepain, 2022. "Altered predictive control during memory suppression in PTSD," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.