IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007341.html
   My bibliography  Save this article

A computational account of threat-related attentional bias

Author

Listed:
  • Toby Wise
  • Jochen Michely
  • Peter Dayan
  • Raymond J Dolan

Abstract

Visual selective attention acts as a filter on perceptual information, facilitating learning and inference about important events in an agent’s environment. A role for visual attention in reward-based decisions has previously been demonstrated, but it remains unclear how visual attention is recruited during aversive learning, particularly when learning about multiple stimuli concurrently. This question is of particular importance in psychopathology, where enhanced attention to threat is a putative feature of pathological anxiety. Using an aversive reversal learning task that required subjects to learn, and exploit, predictions about multiple stimuli, we show that the allocation of visual attention is influenced significantly by aversive value but not by uncertainty. Moreover, this relationship is bidirectional in that attention biases value updates for attended stimuli, resulting in heightened value estimates. Our findings have implications for understanding biased attention in psychopathology and support a role for learning in the expression of threat-related attentional biases in anxiety.Author summary: To make inferences and learn efficiently in the face of a multiplicity of stimuli we need to allocate attention preferentially to those that are most motivationally relevant. It is unclear how this is achieved in aversive environments. We investigated how value (the likelihood of an unpleasant event) and uncertainty (akin to ignorance about its probability) influence visual attention during aversive learning. Our results show that attention is influenced by value but not by uncertainty. Attention in turn results in heightened value estimates for attended stimuli. The findings have implications for understanding the development of pathological threat-related attentional biases that are a feature of anxiety disorders.

Suggested Citation

  • Toby Wise & Jochen Michely & Peter Dayan & Raymond J Dolan, 2019. "A computational account of threat-related attentional bias," PLOS Computational Biology, Public Library of Science, vol. 15(10), pages 1-21, October.
  • Handle: RePEc:plo:pcbi00:1007341
    DOI: 10.1371/journal.pcbi.1007341
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007341
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007341&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007341?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Athina Tzovara & Christoph W Korn & Dominik R Bach, 2018. "Human Pavlovian fear conditioning conforms to probabilistic learning," PLOS Computational Biology, Public Library of Science, vol. 14(8), pages 1-21, August.
    2. repec:cup:judgdm:v:3:y:2008:i::p:396-403 is not listed on IDEAS
    3. Archy O. de Berker & Robb B. Rutledge & Christoph Mathys & Louise Marshall & Gemma F. Cross & Raymond J. Dolan & Sven Bestmann, 2016. "Computations of uncertainty mediate acute stress responses in humans," Nature Communications, Nature, vol. 7(1), pages 1-11, April.
    4. Germain Lefebvre & Maël Lebreton & Florent Meyniel & Sacha Bourgeois-Gironde & Stefano Palminteri, 2017. "Behavioural and neural characterization of optimistic reinforcement learning," Nature Human Behaviour, Nature, vol. 1(4), pages 1-9, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Payam Piray & Nathaniel D Daw, 2020. "A simple model for learning in volatile environments," PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-26, July.
    2. Corgnet, Brice & Hernán-González, Roberto & Kujal, Praveen, 2020. "On booms that never bust: Ambiguity in experimental asset markets with bubbles," Journal of Economic Dynamics and Control, Elsevier, vol. 110(C).
    3. Daniel S Kluger & Nico Broers & Marlen A Roehe & Moritz F Wurm & Niko A Busch & Ricarda I Schubotz, 2020. "Exploitation of local and global information in predictive processing," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-17, April.
    4. Daniel J. Benjamin, 2018. "Errors in Probabilistic Reasoning and Judgment Biases," NBER Working Papers 25200, National Bureau of Economic Research, Inc.
    5. Brice Corgnet & Simon Gaechter & Roberto Hernan Gonzalez, 2020. "Working Too Much for Too Little: Stochastic Rewards Cause Work Addiction," Discussion Papers 2020-03, The Centre for Decision Research and Experimental Economics, School of Economics, University of Nottingham.
    6. Filip Gesiarz & Donal Cahill & Tali Sharot, 2019. "Evidence accumulation is biased by motivation: A computational account," PLOS Computational Biology, Public Library of Science, vol. 15(6), pages 1-15, June.
    7. Stefano Palminteri & Germain Lefebvre & Emma J Kilford & Sarah-Jayne Blakemore, 2017. "Confirmation bias in human reinforcement learning: Evidence from counterfactual feedback processing," PLOS Computational Biology, Public Library of Science, vol. 13(8), pages 1-22, August.
    8. Johann Lussange & Boris Gutkin, 2023. "Order book regulatory impact on stock market quality: a multi-agent reinforcement learning perspective," Papers 2302.04184, arXiv.org.
    9. Xinyi Li & Yinchuan Li & Yuancheng Zhan & Xiao-Yang Liu, 2019. "Optimistic Bull or Pessimistic Bear: Adaptive Deep Reinforcement Learning for Stock Portfolio Allocation," Papers 1907.01503, arXiv.org.
    10. Aurélien Nioche & Basile Garcia & Germain Lefebvre & Thomas Boraud & Nicolas P. Rougier & Sacha Bourgeois-Gironde, 2019. "Coordination over a unique medium of exchange under information scarcity," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-11, December.
    11. Candace M. Raio & Benjamin B. Lu & Michael Grubb & Grant S. Shields & George M. Slavich & Paul Glimcher, 2022. "Cumulative lifetime stressor exposure assessed by the STRAIN predicts economic ambiguity aversion," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Riccardo Bruni & Alessandro Gioffré & Maria Marino, 2022. ""In-group bias in preferences for redistribution: a survey experiment in Italy"," IREA Working Papers 202223, University of Barcelona, Research Institute of Applied Economics, revised Nov 2023.
    13. R Becket Ebitz & Brianna J Sleezer & Hank P Jedema & Charles W Bradberry & Benjamin Y Hayden, 2019. "Tonic exploration governs both flexibility and lapses," PLOS Computational Biology, Public Library of Science, vol. 15(11), pages 1-37, November.
    14. Payam Piray & Nathaniel D. Daw, 2024. "Computational processes of simultaneous learning of stochasticity and volatility in humans," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    15. Filip Melinscak & Dominik R Bach, 2020. "Computational optimization of associative learning experiments," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-23, January.
    16. C. A. Tapia Cortez & J. Coulton & C. Sammut & S. Saydam, 2018. "Determining the chaotic behaviour of copper prices in the long-term using annual price data," Palgrave Communications, Palgrave Macmillan, vol. 4(1), pages 1-13, December.
    17. Payam Piray & Nathaniel D. Daw, 2021. "A model for learning based on the joint estimation of stochasticity and volatility," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    18. Johann Lussange & Stefano Vrizzi & Stefano Palminteri & Boris Gutkin, 2024. "Modelling crypto markets by multi-agent reinforcement learning," Papers 2402.10803, arXiv.org.
    19. Johann Lussange & Stefano Vrizzi & Stefano Palminteri & Boris Gutkin, 2024. "Mesoscale effects of trader learning behaviors in financial markets: A multi-agent reinforcement learning study," Post-Print hal-04790290, HAL.
    20. Chih-Chung Ting & Nahuel Salem-Garcia & Stefano Palminteri & Jan B. Engelmann & Maël Lebreton, 2023. "Neural and computational underpinnings of biased confidence in human reinforcement learning," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.