IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38190-5.html
   My bibliography  Save this article

Single-neuron mechanisms of neural adaptation in the human temporal lobe

Author

Listed:
  • Thomas P. Reber

    (UniDistance Suisse
    University of Bonn Medical Centre)

  • Sina Mackay

    (University of Bonn Medical Centre)

  • Marcel Bausch

    (University of Bonn Medical Centre)

  • Marcel S. Kehl

    (University of Bonn Medical Centre)

  • Valeri Borger

    (University of Bonn Medical Centre)

  • Rainer Surges

    (University of Bonn Medical Centre)

  • Florian Mormann

    (University of Bonn Medical Centre)

Abstract

A central function of the human brain is to adapt to new situations based on past experience. Adaptation is reflected behaviorally by shorter reaction times to repeating or similar stimuli, and neurophysiologically by reduced neural activity in bulk-tissue measurements with fMRI or EEG. Several potential single-neuron mechanisms have been hypothesized to cause this reduction of activity at the macroscopic level. We here explore these mechanisms using an adaptation paradigm with visual stimuli bearing abstract semantic similarity. We recorded intracranial EEG (iEEG) simultaneously with spiking activity of single neurons in the medial temporal lobes of 25 neurosurgical patients. Recording from 4917 single neurons, we demonstrate that reduced event-related potentials in the macroscopic iEEG signal are associated with a sharpening of single-neuron tuning curves in the amygdala, but with an overall reduction of single-neuron activity in the hippocampus, entorhinal cortex, and parahippocampal cortex, consistent with fatiguing in these areas.

Suggested Citation

  • Thomas P. Reber & Sina Mackay & Marcel Bausch & Marcel S. Kehl & Valeri Borger & Rainer Surges & Florian Mormann, 2023. "Single-neuron mechanisms of neural adaptation in the human temporal lobe," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38190-5
    DOI: 10.1038/s41467-023-38190-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38190-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38190-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sebastian Geukes & René J Huster & Andreas Wollbrink & Markus Junghöfer & Pienie Zwitserlood & Christian Dobel, 2013. "A Large N400 but No BOLD Effect – Comparing Source Activations of Semantic Priming in Simultaneous EEG-fMRI," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-11, December.
    2. Hernan G. Rey & Emanuela De Falco & Matias J. Ison & Antonio Valentin & Gonzalo Alarcon & Richard Selway & Mark P. Richardson & Rodrigo Quian Quiroga, 2018. "Encoding of long-term associations through neural unitization in the human medial temporal lobe," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    3. Emanuela De Falco & Matias J. Ison & Itzhak Fried & Rodrigo Quian Quiroga, 2016. "Long-term coding of personal and universal associations underlying the memory web in the human brain," Nature Communications, Nature, vol. 7(1), pages 1-11, December.
    4. Milena Rabovsky & Steven S. Hansen & James L. McClelland, 2018. "Modelling the N400 brain potential as change in a probabilistic representation of meaning," Nature Human Behaviour, Nature, vol. 2(9), pages 693-705, September.
    5. R. Quian Quiroga & L. Reddy & G. Kreiman & C. Koch & I. Fried, 2005. "Invariant visual representation by single neurons in the human brain," Nature, Nature, vol. 435(7045), pages 1102-1107, June.
    6. Marcel Bausch & Johannes Niediek & Thomas P. Reber & Sina Mackay & Jan Boström & Christian E. Elger & Florian Mormann, 2021. "Concept neurons in the human medial temporal lobe flexibly represent abstract relations between concepts," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    7. Y. Bitterman & R. Mukamel & R. Malach & I. Fried & I. Nelken, 2008. "Ultra-fine frequency tuning revealed in single neurons of human auditory cortex," Nature, Nature, vol. 451(7175), pages 197-201, January.
    8. Arjen Alink & Hunar Abdulrahman & Richard N. Henson, 2018. "Forward models demonstrate that repetition suppression is best modelled by local neural scaling," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    9. Shuo Wang & Rongjun Yu & J. Michael Tyszka & Shanshan Zhen & Christopher Kovach & Sai Sun & Yi Huang & Rene Hurlemann & Ian B. Ross & Jeffrey M. Chung & Adam N. Mamelak & Ralph Adolphs & Ueli Rutishau, 2017. "The human amygdala parametrically encodes the intensity of specific facial emotions and their categorical ambiguity," Nature Communications, Nature, vol. 8(1), pages 1-13, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiara Gastaldi & Tilo Schwalger & Emanuela De Falco & Rodrigo Quian Quiroga & Wulfram Gerstner, 2021. "When shared concept cells support associations: Theory of overlapping memory engrams," PLOS Computational Biology, Public Library of Science, vol. 17(12), pages 1-44, December.
    2. Marcel Bausch & Johannes Niediek & Thomas P. Reber & Sina Mackay & Jan Boström & Christian E. Elger & Florian Mormann, 2021. "Concept neurons in the human medial temporal lobe flexibly represent abstract relations between concepts," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Rodrigo Quian Quiroga & Marta Boscaglia & Jacques Jonas & Hernan G. Rey & Xiaoqian Yan & Louis Maillard & Sophie Colnat-Coulbois & Laurent Koessler & Bruno Rossion, 2023. "Single neuron responses underlying face recognition in the human midfusiform face-selective cortex," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Sina Mackay & Thomas P. Reber & Marcel Bausch & Jan Boström & Christian E. Elger & Florian Mormann, 2024. "Concept and location neurons in the human brain provide the ‘what’ and ‘where’ in memory formation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Umut Güçlü & Marcel A J van Gerven, 2014. "Unsupervised Feature Learning Improves Prediction of Human Brain Activity in Response to Natural Images," PLOS Computational Biology, Public Library of Science, vol. 10(8), pages 1-12, August.
    6. Daniel S Kluger & Nico Broers & Marlen A Roehe & Moritz F Wurm & Niko A Busch & Ricarda I Schubotz, 2020. "Exploitation of local and global information in predictive processing," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-17, April.
    7. Martinez-Saito, Mario, 2022. "Discrete scaling and criticality in a chain of adaptive excitable integrators," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    8. Luca D. Kolibius & Frederic Roux & George Parish & Marije Wal & Mircea Plas & Ramesh Chelvarajah & Vijay Sawlani & David T. Rollings & Johannes D. Lang & Stephanie Gollwitzer & Katrin Walther & Rüdige, 2023. "Hippocampal neurons code individual episodic memories in humans," Nature Human Behaviour, Nature, vol. 7(11), pages 1968-1979, November.
    9. Jakub Kopal & Kuldeep Kumar & Kimia Shafighi & Karin Saltoun & Claudia Modenato & Clara A. Moreau & Guillaume Huguet & Martineau Jean-Louis & Charles-Olivier Martin & Zohra Saci & Nadine Younis & Elis, 2024. "Using rare genetic mutations to revisit structural brain asymmetry," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    10. Nanyi Fei & Zhiwu Lu & Yizhao Gao & Guoxing Yang & Yuqi Huo & Jingyuan Wen & Haoyu Lu & Ruihua Song & Xin Gao & Tao Xiang & Hao Sun & Ji-Rong Wen, 2022. "Towards artificial general intelligence via a multimodal foundation model," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    11. Louis Kang & Taro Toyoizumi, 2024. "Distinguishing examples while building concepts in hippocampal and artificial networks," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    12. Ahalya Prabhakar & Todd Murphey, 2022. "Mechanical intelligence for learning embodied sensor-object relationships," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. Henning Sprekeler & Christian Michaelis & Laurenz Wiskott, 2007. "Slowness: An Objective for Spike-Timing–Dependent Plasticity?," PLOS Computational Biology, Public Library of Science, vol. 3(6), pages 1-13, June.
    14. Dock H. Duncan & Dirk Moorselaar & Jan Theeuwes, 2023. "Pinging the brain to reveal the hidden attentional priority map using encephalography," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. David Balduzzi & Giulio Tononi, 2009. "Qualia: The Geometry of Integrated Information," PLOS Computational Biology, Public Library of Science, vol. 5(8), pages 1-24, August.
    16. Jörn Diedrichsen & Nikolaus Kriegeskorte, 2017. "Representational models: A common framework for understanding encoding, pattern-component, and representational-similarity analysis," PLOS Computational Biology, Public Library of Science, vol. 13(4), pages 1-33, April.
    17. Carlo Baldassi & Alireza Alemi-Neissi & Marino Pagan & James J DiCarlo & Riccardo Zecchina & Davide Zoccolan, 2013. "Shape Similarity, Better than Semantic Membership, Accounts for the Structure of Visual Object Representations in a Population of Monkey Inferotemporal Neurons," PLOS Computational Biology, Public Library of Science, vol. 9(8), pages 1-20, August.
    18. Jongwoon Kim & Hengji Huang & Earl T. Gilbert & Kaiser C. Arndt & Daniel Fine English & Xiaoting Jia, 2024. "T-DOpE probes reveal sensitivity of hippocampal oscillations to cannabinoids in behaving mice," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    19. Shiva Farashahi & Alireza Soltani, 2021. "Computational mechanisms of distributed value representations and mixed learning strategies," Nature Communications, Nature, vol. 12(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38190-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.