IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0213873.html
   My bibliography  Save this article

Opportunities for genomic selection in American mink: A simulation study

Author

Listed:
  • Karim Karimi
  • Mehdi Sargolzaei
  • Graham Stuart Plastow
  • Zhiquan Wang
  • Younes Miar

Abstract

Genomic selection can be considered as an effective tool for developing breeding programs in American mink. However, the genetic gains for economically important traits can be influenced by the accuracy of genomic predictions. The objective of this study was to investigate the prediction accuracies of traditional best linear unbiased prediction (BLUP), multi-step genomic BLUP (GBLUP) and single-step GBLUP (ssGBLUP) methods in American mink using simulated data with different levels of heritability, marker density, training set (TS) sizes and selection designs based on either phenotypic performance or estimated breeding values (EBVs). Under EBV selection design, the accuracy of BLUP predictions was increased by 38% and 44% for h2 = 0.10, 27% and 29% for h2 = 0.20, and 5.8% and 6% for h2 = 0.50 using GBLUP and ssGBLUP methods, respectively. Under phenotypic selection design, the accuracies of prediction by ssGBLUP method were 11.8% and 15.4% higher than those obtained by GBLUP for heritability of 0.10 and 0.20, respectively. However, the efficiency of ssGBLUP and GBLUP was not influenced by selection design at higher level of heritability (h2 = 0.50). Furthermore, higher selection intensity increased the bias of predictions in both pedigree-based and genomic evaluations. Regardless of selection design, TS sizes for GBLUP and ssGBLUP methods should be at least 3000 to achieve more accuracy than using BLUP for heritability of 0.50 and marker density of 10k and 50k. Overall, more accurate predictions were obtained using ssGBLUP method particularly for lowly heritable traits and low density of markers. Our results indicated that TS sizes should be optimized in accordance with heritability level, marker density, selection design and prediction method for genomic selection in American mink. The results provided an initial framework for designing genomic selection in mink breeding programs.

Suggested Citation

  • Karim Karimi & Mehdi Sargolzaei & Graham Stuart Plastow & Zhiquan Wang & Younes Miar, 2019. "Opportunities for genomic selection in American mink: A simulation study," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-15, March.
  • Handle: RePEc:plo:pone00:0213873
    DOI: 10.1371/journal.pone.0213873
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0213873
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0213873&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0213873?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Charles-Elie Rabier & Philippe Barre & Torben Asp & Gilles Charmet & Brigitte Mangin, 2016. "On the Accuracy of Genomic Selection," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-23, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charles‐Elie Rabier & Simona Grusea, 2021. "Prediction in high‐dimensional linear models and application to genomic selection under imperfect linkage disequilibrium," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 1001-1026, August.
    2. Julien Frouin & Axel Labeyrie & Arnaud Boisnard & Gian Attilio Sacchi & Nourollah Ahmadi, 2019. "Genomic prediction offers the most effective marker assisted breeding approach for ability to prevent arsenic accumulation in rice grains," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-22, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0213873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.