IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v178y2016icp404-414.html
   My bibliography  Save this article

Wind farm layout optimization on complex terrains – Integrating a CFD wake model with mixed-integer programming

Author

Listed:
  • Kuo, Jim Y.J.
  • Romero, David A.
  • Beck, J. Christopher
  • Amon, Cristina H.

Abstract

In recent years, wind farm optimization has received much attention in the literature. The aim of wind farm design is to maximize energy production while minimizing costs. The wind farm layout optimization (WFLO) problem on uniform terrains has been tackled by a number of approaches; however, optimizing wind farm layouts on complex terrains is challenging due to the lack of accurate, computationally tractable wake models to evaluate wind farm layouts. This paper proposes an algorithm that couples computational fluid dynamics (CFD) with mixed-integer programming (MIP) to optimize layouts on complex terrains. CFD simulations are used to iteratively improve the accuracy of wake deficit predictions while MIP is used for the optimization process. The ability of MIP solvers to find optimal solutions is critical for capturing the effects of improved wake deficit predictions on the quality of wind farm layout solutions. The proposed algorithm was applied on a wind farm domain in Carleton-sur-Mer, Quebec, Canada. Results show that the proposed algorithm is capable of producing excellent layouts in complex terrains.

Suggested Citation

  • Kuo, Jim Y.J. & Romero, David A. & Beck, J. Christopher & Amon, Cristina H., 2016. "Wind farm layout optimization on complex terrains – Integrating a CFD wake model with mixed-integer programming," Applied Energy, Elsevier, vol. 178(C), pages 404-414.
  • Handle: RePEc:eee:appene:v:178:y:2016:i:c:p:404-414
    DOI: 10.1016/j.apenergy.2016.06.085
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916308595
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.06.085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu-Ting Wu & Fernando Porté-Agel, 2012. "Atmospheric Turbulence Effects on Wind-Turbine Wakes: An LES Study," Energies, MDPI, vol. 5(12), pages 1-23, December.
    2. Park, Jinkyoo & Law, Kincho H., 2015. "Layout optimization for maximizing wind farm power production using sequential convex programming," Applied Energy, Elsevier, vol. 151(C), pages 320-334.
    3. Zhong, Hongmin & Du, Pingan & Tang, Fangning & Wang, Li, 2015. "Lagrangian dynamic large-eddy simulation of wind turbine near wakes combined with an actuator line method," Applied Energy, Elsevier, vol. 144(C), pages 224-233.
    4. Chowdhury, Souma & Zhang, Jie & Messac, Achille & Castillo, Luciano, 2012. "Unrestricted wind farm layout optimization (UWFLO): Investigating key factors influencing the maximum power generation," Renewable Energy, Elsevier, vol. 38(1), pages 16-30.
    5. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2014. "Study on offshore wind power potential and wind farm optimization in Hong Kong," Applied Energy, Elsevier, vol. 130(C), pages 519-531.
    6. Song, M.X. & Chen, K. & He, Z.Y. & Zhang, X., 2012. "Wake flow model of wind turbine using particle simulation," Renewable Energy, Elsevier, vol. 41(C), pages 185-190.
    7. Grady, S.A. & Hussaini, M.Y. & Abdullah, M.M., 2005. "Placement of wind turbines using genetic algorithms," Renewable Energy, Elsevier, vol. 30(2), pages 259-270.
    8. Turner, S.D.O. & Romero, D.A. & Zhang, P.Y. & Amon, C.H. & Chan, T.C.Y., 2014. "A new mathematical programming approach to optimize wind farm layouts," Renewable Energy, Elsevier, vol. 63(C), pages 674-680.
    9. Kuo, Jim Y.J. & Romero, David A. & Amon, Cristina H., 2015. "A mechanistic semi-empirical wake interaction model for wind farm layout optimization," Energy, Elsevier, vol. 93(P2), pages 2157-2165.
    10. Feng, Ju & Shen, Wen Zhong, 2015. "Solving the wind farm layout optimization problem using random search algorithm," Renewable Energy, Elsevier, vol. 78(C), pages 182-192.
    11. Song, M.X. & Chen, K. & He, Z.Y. & Zhang, X., 2013. "Bionic optimization for micro-siting of wind farm on complex terrain," Renewable Energy, Elsevier, vol. 50(C), pages 551-557.
    12. Song, M.X. & Chen, K. & Zhang, X. & Wang, J., 2015. "The lazy greedy algorithm for power optimization of wind turbine positioning on complex terrain," Energy, Elsevier, vol. 80(C), pages 567-574.
    13. Chehouri, Adam & Younes, Rafic & Ilinca, Adrian & Perron, Jean, 2015. "Review of performance optimization techniques applied to wind turbines," Applied Energy, Elsevier, vol. 142(C), pages 361-388.
    14. Wagner, Markus & Day, Jareth & Neumann, Frank, 2013. "A fast and effective local search algorithm for optimizing the placement of wind turbines," Renewable Energy, Elsevier, vol. 51(C), pages 64-70.
    15. Song, M.X. & Chen, K. & He, Z.Y. & Zhang, X., 2014. "Optimization of wind farm micro-siting for complex terrain using greedy algorithm," Energy, Elsevier, vol. 67(C), pages 454-459.
    16. Kusiak, Andrew & Song, Zhe, 2010. "Design of wind farm layout for maximum wind energy capture," Renewable Energy, Elsevier, vol. 35(3), pages 685-694.
    17. Castellani, Francesco & Vignaroli, Andrea, 2013. "An application of the actuator disc model for wind turbine wakes calculations," Applied Energy, Elsevier, vol. 101(C), pages 432-440.
    18. Saavedra-Moreno, B. & Salcedo-Sanz, S. & Paniagua-Tineo, A. & Prieto, L. & Portilla-Figueras, A., 2011. "Seeding evolutionary algorithms with heuristics for optimal wind turbines positioning in wind farms," Renewable Energy, Elsevier, vol. 36(11), pages 2838-2844.
    19. Pérez, Beatriz & Mínguez, Roberto & Guanche, Raúl, 2013. "Offshore wind farm layout optimization using mathematical programming techniques," Renewable Energy, Elsevier, vol. 53(C), pages 389-399.
    20. Barthelmie, R.J. & Pryor, S.C., 2013. "An overview of data for wake model evaluation in the Virtual Wakes Laboratory," Applied Energy, Elsevier, vol. 104(C), pages 834-844.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azlan, F. & Kurnia, J.C. & Tan, B.T. & Ismadi, M.-Z., 2021. "Review on optimisation methods of wind farm array under three classical wind condition problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Guirguis, David & Romero, David A. & Amon, Cristina H., 2016. "Toward efficient optimization of wind farm layouts: Utilizing exact gradient information," Applied Energy, Elsevier, vol. 179(C), pages 110-123.
    3. Yang, Kyoungboo & Kwak, Gyeongil & Cho, Kyungho & Huh, Jongchul, 2019. "Wind farm layout optimization for wake effect uniformity," Energy, Elsevier, vol. 183(C), pages 983-995.
    4. Guirguis, David & Romero, David A. & Amon, Cristina H., 2017. "Gradient-based multidisciplinary design of wind farms with continuous-variable formulations," Applied Energy, Elsevier, vol. 197(C), pages 279-291.
    5. Wang, Longyan & Cholette, Michael E. & Tan, Andy C.C. & Gu, Yuantong, 2017. "A computationally-efficient layout optimization method for real wind farms considering altitude variations," Energy, Elsevier, vol. 132(C), pages 147-159.
    6. Brogna, Roberto & Feng, Ju & Sørensen, Jens Nørkær & Shen, Wen Zhong & Porté-Agel, Fernando, 2020. "A new wake model and comparison of eight algorithms for layout optimization of wind farms in complex terrain," Applied Energy, Elsevier, vol. 259(C).
    7. Jim Kuo & Kevin Pan & Ni Li & He Shen, 2020. "Wind Farm Yaw Optimization via Random Search Algorithm," Energies, MDPI, vol. 13(4), pages 1-15, February.
    8. Dinçer, A.E. & Demir, A. & Yılmaz, K., 2024. "Multi-objective turbine allocation on a wind farm site," Applied Energy, Elsevier, vol. 355(C).
    9. Antonini, Enrico G.A. & Romero, David A. & Amon, Cristina H., 2020. "Optimal design of wind farms in complex terrains using computational fluid dynamics and adjoint methods," Applied Energy, Elsevier, vol. 261(C).
    10. Wędzik, Andrzej & Siewierski, Tomasz & Szypowski, Michał, 2016. "A new method for simultaneous optimizing of wind farm’s network layout and cable cross-sections by MILP optimization," Applied Energy, Elsevier, vol. 182(C), pages 525-538.
    11. Antonini, Enrico G.A. & Romero, David A. & Amon, Cristina H., 2018. "Continuous adjoint formulation for wind farm layout optimization: A 2D implementation," Applied Energy, Elsevier, vol. 228(C), pages 2333-2345.
    12. Kyoungboo Yang & Kyungho Cho, 2019. "Simulated Annealing Algorithm for Wind Farm Layout Optimization: A Benchmark Study," Energies, MDPI, vol. 12(23), pages 1-15, November.
    13. Feng, Ju & Shen, Wen Zhong, 2017. "Design optimization of offshore wind farms with multiple types of wind turbines," Applied Energy, Elsevier, vol. 205(C), pages 1283-1297.
    14. Hou, Peng & Hu, Weihao & Chen, Cong & Soltani, Mohsen & Chen, Zhe, 2016. "Optimization of offshore wind farm layout in restricted zones," Energy, Elsevier, vol. 113(C), pages 487-496.
    15. Nicolas Kirchner-Bossi & Fernando Porté-Agel, 2018. "Realistic Wind Farm Layout Optimization through Genetic Algorithms Using a Gaussian Wake Model," Energies, MDPI, vol. 11(12), pages 1-26, November.
    16. Abdelsalam, Ali M. & El-Shorbagy, M.A., 2018. "Optimization of wind turbines siting in a wind farm using genetic algorithm based local search," Renewable Energy, Elsevier, vol. 123(C), pages 748-755.
    17. Muhammad Nabeel Hussain & Nadeem Shaukat & Ammar Ahmad & Muhammad Abid & Abrar Hashmi & Zohreh Rajabi & Muhammad Atiq Ur Rehman Tariq, 2022. "Micro-Siting of Wind Turbines in an Optimal Wind Farm Area Using Teaching–Learning-Based Optimization Technique," Sustainability, MDPI, vol. 14(14), pages 1-24, July.
    18. Behera, Sasmita & Sahoo, Subhrajit & Pati, B.B., 2015. "A review on optimization algorithms and application to wind energy integration to grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 214-227.
    19. Hou, Peng & Hu, Weihao & Soltani, Mohsen & Chen, Cong & Chen, Zhe, 2017. "Combined optimization for offshore wind turbine micro siting," Applied Energy, Elsevier, vol. 189(C), pages 271-282.
    20. Muhammad Nabeel Hussain & Nadeem Shaukat & Ammar Ahmad & Muhammad Abid & Abrar Hashmi & Zohreh Rajabi & Muhammad Atiq Ur Rehman Tariq, 2022. "Effective Realization of Multi-Objective Elitist Teaching–Learning Based Optimization Technique for the Micro-Siting of Wind Turbines," Sustainability, MDPI, vol. 14(14), pages 1-24, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:178:y:2016:i:c:p:404-414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.