IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0203794.html
   My bibliography  Save this article

Automatic detection of cyberbullying in social media text

Author

Listed:
  • Cynthia Van Hee
  • Gilles Jacobs
  • Chris Emmery
  • Bart Desmet
  • Els Lefever
  • Ben Verhoeven
  • Guy De Pauw
  • Walter Daelemans
  • Véronique Hoste

Abstract

While social media offer great communication opportunities, they also increase the vulnerability of young people to threatening situations online. Recent studies report that cyberbullying constitutes a growing problem among youngsters. Successful prevention depends on the adequate detection of potentially harmful messages and the information overload on the Web requires intelligent systems to identify potential risks automatically. The focus of this paper is on automatic cyberbullying detection in social media text by modelling posts written by bullies, victims, and bystanders of online bullying. We describe the collection and fine-grained annotation of a cyberbullying corpus for English and Dutch and perform a series of binary classification experiments to determine the feasibility of automatic cyberbullying detection. We make use of linear support vector machines exploiting a rich feature set and investigate which information sources contribute the most for the task. Experiments on a hold-out test set reveal promising results for the detection of cyberbullying-related posts. After optimisation of the hyperparameters, the classifier yields an F1 score of 64% and 61% for English and Dutch respectively, and considerably outperforms baseline systems.

Suggested Citation

  • Cynthia Van Hee & Gilles Jacobs & Chris Emmery & Bart Desmet & Els Lefever & Ben Verhoeven & Guy De Pauw & Walter Daelemans & Véronique Hoste, 2018. "Automatic detection of cyberbullying in social media text," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-22, October.
  • Handle: RePEc:plo:pone00:0203794
    DOI: 10.1371/journal.pone.0203794
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0203794
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0203794&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0203794?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Van Royen, Kathleen & Poels, Karolien & Vandebosch, Heidi, 2016. "Harmonizing freedom and protection: Adolescents' voices on automatic monitoring of social networking sites," Children and Youth Services Review, Elsevier, vol. 64(C), pages 35-41.
    2. Scott Deerwester & Susan T. Dumais & George W. Furnas & Thomas K. Landauer & Richard Harshman, 1990. "Indexing by latent semantic analysis," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 41(6), pages 391-407, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Falla & Rosario Ortega-Ruiz & Eva M. Romera, 2021. "Mechanisms of Moral Disengagement in the Transition from Cybergossip to Cyberaggression: A Longitudinal Study," IJERPH, MDPI, vol. 18(3), pages 1-12, January.
    2. Amgad Muneer & Suliman Mohamed Fati, 2020. "A Comparative Analysis of Machine Learning Techniques for Cyberbullying Detection on Twitter," Future Internet, MDPI, vol. 12(11), pages 1-20, October.
    3. Shuaa A. Aljasir & Maisoon O. Alsebaei, 2022. "Cyberbullying and cybervictimization on digital media platforms: the role of demographic variables and parental mediation strategies," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-9, December.
    4. Silvia Gabrielli & Silvia Rizzi & Sara Carbone & Enrico Maria Piras, 2021. "School Interventions for Bullying–Cyberbullying Prevention in Adolescents: Insights from the UPRIGHT and CREEP Projects," IJERPH, MDPI, vol. 18(21), pages 1-13, November.
    5. Carlos Carrasco-Farré, 2022. "The fingerprints of misinformation: how deceptive content differs from reliable sources in terms of cognitive effort and appeal to emotions," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-18, December.
    6. Laura R. Persky & Janet L. Walsh & Ken Pinnock, 2023. "Creating Positive Workplace Culture To Reduce Workplace Bullying," Global Journal of Business Research, The Institute for Business and Finance Research, vol. 17(1), pages 43-53.
    7. Jinyu Huang & Zhaohao Zhong & Haoyuan Zhang & Liping Li, 2021. "Cyberbullying in Social Media and Online Games among Chinese College Students and Its Associated Factors," IJERPH, MDPI, vol. 18(9), pages 1-12, April.
    8. Xieling Chen & Di Zou & Haoran Xie & Gary Cheng, 2021. "A Topic-Based Bibliometric Review of Computers in Human Behavior: Contributors, Collaborations, and Research Topics," Sustainability, MDPI, vol. 13(9), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Irina Wedel & Michael Palk & Stefan Voß, 2022. "A Bilingual Comparison of Sentiment and Topics for a Product Event on Twitter," Information Systems Frontiers, Springer, vol. 24(5), pages 1635-1646, October.
    2. Mohammed Salem Binwahlan, 2023. "Polynomial Networks Model for Arabic Text Summarization," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 10(2), pages 74-84, February.
    3. Curci, Ylenia & Mongeau Ospina, Christian A., 2016. "Investigating biofuels through network analysis," Energy Policy, Elsevier, vol. 97(C), pages 60-72.
    4. Chao Wei & Senlin Luo & Xincheng Ma & Hao Ren & Ji Zhang & Limin Pan, 2016. "Locally Embedding Autoencoders: A Semi-Supervised Manifold Learning Approach of Document Representation," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-20, January.
    5. Maksym Polyakov & Morteza Chalak & Md. Sayed Iftekhar & Ram Pandit & Sorada Tapsuwan & Fan Zhang & Chunbo Ma, 2018. "Authorship, Collaboration, Topics, and Research Gaps in Environmental and Resource Economics 1991–2015," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(1), pages 217-239, September.
    6. Ding, Ying, 2011. "Community detection: Topological vs. topical," Journal of Informetrics, Elsevier, vol. 5(4), pages 498-514.
    7. Klaus Gugler & Florian Szücs & Ulrich Wohak, 2023. "Start-up Acquisitions, Venture Capital and Innovation: A Comparative Study of Google, Apple, Facebook, Amazon and Microsoft," Department of Economics Working Papers wuwp340, Vienna University of Economics and Business, Department of Economics.
    8. Md Nazrul Islam & Md Mofazzal Hossain & Md Shafayet Shahed Ornob, 2024. "Business research on Industry 4.0: a systematic review using topic modelling approach," Future Business Journal, Springer, vol. 10(1), pages 1-15, December.
    9. Juan Shi & Kin Keung Lai & Ping Hu & Gang Chen, 2018. "Factors dominating individual information disseminating behavior on social networking sites," Information Technology and Management, Springer, vol. 19(2), pages 121-139, June.
    10. Ganesh Dash & Chetan Sharma & Shamneesh Sharma, 2023. "Sustainable Marketing and the Role of Social Media: An Experimental Study Using Natural Language Processing (NLP)," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    11. Paola Cerchiello & Giancarlo Nicola, 2018. "Assessing News Contagion in Finance," Econometrics, MDPI, vol. 6(1), pages 1-19, February.
    12. Shr-Wei Kao & Pin Luarn, 2020. "Topic Modeling Analysis of Social Enterprises: Twitter Evidence," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
    13. Gissler, Stefan & Oldfather, Jeremy & Ruffino, Doriana, 2016. "Lending on hold: Regulatory uncertainty and bank lending standards," Journal of Monetary Economics, Elsevier, vol. 81(C), pages 89-101.
    14. Wittek, Peter, 2013. "Two-way incremental seriation in the temporal domain with three-dimensional visualization: Making sense of evolving high-dimensional datasets," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 193-201.
    15. Alina Evstigneeva & Mark Sidorovskiy, 2021. "Assessment of Clarity of Bank of Russia Monetary Policy Communication by Neural Network Approach," Russian Journal of Money and Finance, Bank of Russia, vol. 80(3), pages 3-33, September.
    16. Arno de Caigny & Kristof Coussement & Koen W. de Bock & Stefan Lessmann, 2019. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," Post-Print hal-02275958, HAL.
    17. Hei-Chia Wang & Tzu-Ting Hsu & Yunita Sari, 2019. "Personal research idea recommendation using research trends and a hierarchical topic model," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1385-1406, December.
    18. Borke, Lukas & Härdle, Wolfgang Karl, 2016. "Q3-D3-Lsa," SFB 649 Discussion Papers 2016-049, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    19. Hiroaki Sugino & Tatsuya Sekiguchi & Yuuki Terada & Naoki Hayashi, 2023. "“Future Compass”, a Tool That Allows Us to See the Right Horizon—Integration of Topic Modeling and Multiple-Factor Analysis," Sustainability, MDPI, vol. 15(13), pages 1-20, June.
    20. David A. Broniatowski, 2018. "Building the tower without climbing it: Progress in engineering systems," Systems Engineering, John Wiley & Sons, vol. 21(3), pages 259-281, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0203794. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.