IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v66y2013icp193-201.html
   My bibliography  Save this article

Two-way incremental seriation in the temporal domain with three-dimensional visualization: Making sense of evolving high-dimensional datasets

Author

Listed:
  • Wittek, Peter

Abstract

Two-way seriation is a popular technique to analyze groups of similar instances and their features, as well as the connections between the groups themselves. The two-way seriated data may be visualized as a two-dimensional heat map or as a three-dimensional landscape where colour codes or height correspond to the values in the matrix. To achieve a meaningful visualization of high-dimensional data, a compactly supported convolution kernel is introduced, which is similar to filter kernels used in image reconstruction and geostatistics. This filter populates the high-dimensional space with values that interpolate nearby elements and provides insight into the clustering structure. Ordinary two-way seriation is also extended to deal with updates of both the row and column spaces. Combined with the convolution kernel, a three-dimensional visualization of dynamics is demonstrated on two datasets, a news collection and a set of microarray measurements.

Suggested Citation

  • Wittek, Peter, 2013. "Two-way incremental seriation in the temporal domain with three-dimensional visualization: Making sense of evolving high-dimensional datasets," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 193-201.
  • Handle: RePEc:eee:csdana:v:66:y:2013:i:c:p:193-201
    DOI: 10.1016/j.csda.2013.03.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794731300128X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2013.03.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Han-Ming & Tien, Yin-Jing & Chen, Chun-houh, 2010. "GAP: A graphical environment for matrix visualization and cluster analysis," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 767-778, March.
    2. Wilkinson, Leland & Friendly, Michael, 2009. "The History of the Cluster Heat Map," The American Statistician, American Statistical Association, vol. 63(2), pages 179-184.
    3. Hahsler, Michael & Hornik, Kurt, 2007. "TSPInfrastructure for the Traveling Salesperson Problem," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 23(i02).
    4. Scott Deerwester & Susan T. Dumais & George W. Furnas & Thomas K. Landauer & Richard Harshman, 1990. "Indexing by latent semantic analysis," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 41(6), pages 391-407, September.
    5. William T. McCormick & Paul J. Schweitzer & Thomas W. White, 1972. "Problem Decomposition and Data Reorganization by a Clustering Technique," Operations Research, INFORMS, vol. 20(5), pages 993-1009, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Curci, Ylenia & Mongeau Ospina, Christian A., 2016. "Investigating biofuels through network analysis," Energy Policy, Elsevier, vol. 97(C), pages 60-72.
    2. Chao Wei & Senlin Luo & Xincheng Ma & Hao Ren & Ji Zhang & Limin Pan, 2016. "Locally Embedding Autoencoders: A Semi-Supervised Manifold Learning Approach of Document Representation," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-20, January.
    3. Berardi, Victor L. & Zhang, Guoqiang & Felix Offodile, O., 1999. "A mathematical programming approach to evaluating alternative machine clusters in cellular manufacturing," International Journal of Production Economics, Elsevier, vol. 58(3), pages 253-264, January.
    4. Maksym Polyakov & Morteza Chalak & Md. Sayed Iftekhar & Ram Pandit & Sorada Tapsuwan & Fan Zhang & Chunbo Ma, 2018. "Authorship, Collaboration, Topics, and Research Gaps in Environmental and Resource Economics 1991–2015," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(1), pages 217-239, September.
    5. Ding, Ying, 2011. "Community detection: Topological vs. topical," Journal of Informetrics, Elsevier, vol. 5(4), pages 498-514.
    6. Juan Shi & Kin Keung Lai & Ping Hu & Gang Chen, 2018. "Factors dominating individual information disseminating behavior on social networking sites," Information Technology and Management, Springer, vol. 19(2), pages 121-139, June.
    7. Ganesh Dash & Chetan Sharma & Shamneesh Sharma, 2023. "Sustainable Marketing and the Role of Social Media: An Experimental Study Using Natural Language Processing (NLP)," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    8. Chen, Ying & Koch, Thorsten & Zakiyeva, Nazgul & Liu, Kailiang & Xu, Zhitong & Chen, Chun-houh & Nakano, Junji & Honda, Keisuke, 2023. "Article’s scientific prestige: Measuring the impact of individual articles in the web of science," Journal of Informetrics, Elsevier, vol. 17(1).
    9. Paola Cerchiello & Giancarlo Nicola, 2018. "Assessing News Contagion in Finance," Econometrics, MDPI, vol. 6(1), pages 1-19, February.
    10. Shr-Wei Kao & Pin Luarn, 2020. "Topic Modeling Analysis of Social Enterprises: Twitter Evidence," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
    11. Gissler, Stefan & Oldfather, Jeremy & Ruffino, Doriana, 2016. "Lending on hold: Regulatory uncertainty and bank lending standards," Journal of Monetary Economics, Elsevier, vol. 81(C), pages 89-101.
    12. Alina Evstigneeva & Mark Sidorovskiy, 2021. "Assessment of Clarity of Bank of Russia Monetary Policy Communication by Neural Network Approach," Russian Journal of Money and Finance, Bank of Russia, vol. 80(3), pages 3-33, September.
    13. Hei-Chia Wang & Tzu-Ting Hsu & Yunita Sari, 2019. "Personal research idea recommendation using research trends and a hierarchical topic model," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1385-1406, December.
    14. Aliyev, Denis A. & Zirbel, Craig L., 2023. "Seriation using tree-penalized path length," European Journal of Operational Research, Elsevier, vol. 305(2), pages 617-629.
    15. Marcin Chlebus & Maciej Stefan Świtała, 2020. "So close and so far. Finding similar tendencies in econometrics and machine learning papers. Topic models comparison," Working Papers 2020-16, Faculty of Economic Sciences, University of Warsaw.
    16. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W. & Lessmann, Stefan, 2020. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1563-1578.
    17. Hutchison, Paul D. & Daigle, Ronald J. & George, Benjamin, 2018. "Application of latent semantic analysis in AIS academic research," International Journal of Accounting Information Systems, Elsevier, vol. 31(C), pages 83-96.
    18. Emad Mohamed & Sayed A. Mostafa, 2019. "Computing Happiness from Textual Data," Stats, MDPI, vol. 2(3), pages 1-24, July.
    19. Jake R. Nelson & Tony H. Grubesic, 2018. "Environmental Justice: A Panoptic Overview Using Scientometrics," Sustainability, MDPI, vol. 10(4), pages 1-18, March.
    20. Lüdering Jochen & Winker Peter, 2016. "Forward or Backward Looking? The Economic Discourse and the Observed Reality," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 236(4), pages 483-515, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:66:y:2013:i:c:p:193-201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.