IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0196563.html
   My bibliography  Save this article

Virtual reality method to analyze visual recognition in mice

Author

Listed:
  • Brent Kevin Young
  • Jayden Nicole Brennan
  • Ping Wang
  • Ning Tian

Abstract

Behavioral tests have been extensively used to measure the visual function of mice. To determine how precisely mice perceive certain visual cues, it is necessary to have a quantifiable measurement of their behavioral responses. Recently, virtual reality tests have been utilized for a variety of purposes, from analyzing hippocampal cell functionality to identifying visual acuity. Despite the widespread use of these tests, the training requirement for the recognition of a variety of different visual targets, and the performance of the behavioral tests has not been thoroughly characterized. We have developed a virtual reality behavior testing approach that can essay a variety of different aspects of visual perception, including color/luminance and motion detection. When tested for the ability to detect a color/luminance target or a moving target, mice were able to discern the designated target after 9 days of continuous training. However, the quality of their performance is significantly affected by the complexity of the visual target, and their ability to navigate on a spherical treadmill. Importantly, mice retained memory of their visual recognition for at least three weeks after the end of their behavioral training.

Suggested Citation

  • Brent Kevin Young & Jayden Nicole Brennan & Ping Wang & Ning Tian, 2018. "Virtual reality method to analyze visual recognition in mice," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-14, May.
  • Handle: RePEc:plo:pone00:0196563
    DOI: 10.1371/journal.pone.0196563
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0196563
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0196563&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0196563?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christopher D. Harvey & Forrest Collman & Daniel A. Dombeck & David W. Tank, 2009. "Intracellular dynamics of hippocampal place cells during virtual navigation," Nature, Nature, vol. 461(7266), pages 941-946, October.
    2. Priyamvada Rajasethupathy & Sethuraman Sankaran & James H. Marshel & Christina K. Kim & Emily Ferenczi & Soo Yeun Lee & Andre Berndt & Charu Ramakrishnan & Anna Jaffe & Maisie Lo & Conor Liston & Karl, 2015. "Projections from neocortex mediate top-down control of memory retrieval," Nature, Nature, vol. 526(7575), pages 653-659, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicolas Cazin & Martin Llofriu Alonso & Pablo Scleidorovich Chiodi & Tatiana Pelc & Bruce Harland & Alfredo Weitzenfeld & Jean-Marc Fellous & Peter Ford Dominey, 2019. "Reservoir computing model of prefrontal cortex creates novel combinations of previous navigation sequences from hippocampal place-cell replay with spatial reward propagation," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-32, July.
    2. Florian Raudies & Michael E Hasselmo, 2012. "Modeling Boundary Vector Cell Firing Given Optic Flow as a Cue," PLOS Computational Biology, Public Library of Science, vol. 8(6), pages 1-17, June.
    3. Maanasa Jayachandran & Tatiana D. Viena & Andy Garcia & Abdiel Vasallo Veliz & Sofia Leyva & Valentina Roldan & Robert P. Vertes & Timothy A. Allen, 2023. "Nucleus reuniens transiently synchronizes memory networks at beta frequencies," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Arita Silapetere & Songhwan Hwang & Yusaku Hontani & Rodrigo G. Fernandez Lahore & Jens Balke & Francisco Velazquez Escobar & Martijn Tros & Patrick E. Konold & Rainer Matis & Roberta Croce & Peter J., 2022. "QuasAr Odyssey: the origin of fluorescence and its voltage sensitivity in microbial rhodopsins," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    5. Robert N. Fetcho & Baila S. Hall & David J. Estrin & Alexander P. Walsh & Peter J. Schuette & Jesse Kaminsky & Ashna Singh & Jacob Roshgodal & Charlotte C. Bavley & Viraj Nadkarni & Susan Antigua & Th, 2023. "Regulation of social interaction in mice by a frontostriatal circuit modulated by established hierarchical relationships," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Thibault Cholvin & Marlene Bartos, 2022. "Hemisphere-specific spatial representation by hippocampal granule cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Jens Leth Hougaard & Juan D. Moreno-Ternero & Lars Peter Østerdal, 2022. "Optimal Management of Evolving Hierarchies," Management Science, INFORMS, vol. 68(8), pages 6024-6038, August.
    8. Heather C. Ratigan & Seetha Krishnan & Shai Smith & Mark E. J. Sheffield, 2023. "A thalamic-hippocampal CA1 signal for contextual fear memory suppression, extinction, and discrimination," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    9. Shinichiro Kira & Houman Safaai & Ari S. Morcos & Stefano Panzeri & Christopher D. Harvey, 2023. "A distributed and efficient population code of mixed selectivity neurons for flexible navigation decisions," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    10. Eric Lowet & Krishnakanth Kondabolu & Samuel Zhou & Rebecca A. Mount & Yangyang Wang & Cara R. Ravasio & Xue Han, 2022. "Deep brain stimulation creates informational lesion through membrane depolarization in mouse hippocampus," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    11. Vinod Menon & Domenic Cerri & Byeongwook Lee & Rui Yuan & Sung-Ho Lee & Yen-Yu Ian Shih, 2023. "Optogenetic stimulation of anterior insular cortex neurons in male rats reveals causal mechanisms underlying suppression of the default mode network by the salience network," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    12. Rodrigo G. Fernandez Lahore & Niccolò P. Pampaloni & Enrico Schiewer & M.-Marcel Heim & Linda Tillert & Johannes Vierock & Johannes Oppermann & Jakob Walther & Dietmar Schmitz & David Owald & Andrew J, 2022. "Calcium-permeable channelrhodopsins for the photocontrol of calcium signalling," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    13. Kirsten Bohmbach & Nicola Masala & Eva M. Schönhense & Katharina Hill & André N. Haubrich & Andreas Zimmer & Thoralf Opitz & Heinz Beck & Christian Henneberger, 2022. "An astrocytic signaling loop for frequency-dependent control of dendritic integration and spatial learning," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    14. Jeffrey P Nguyen & Ashley N Linder & George S Plummer & Joshua W Shaevitz & Andrew M Leifer, 2017. "Automatically tracking neurons in a moving and deforming brain," PLOS Computational Biology, Public Library of Science, vol. 13(5), pages 1-19, May.
    15. Thomas Hainmueller & Aurore Cazala & Li-Wen Huang & Marlene Bartos, 2024. "Subfield-specific interneuron circuits govern the hippocampal response to novelty in male mice," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    16. Samuel K. H. Sy & Danny C. W. Chan & Roy C. H. Chan & Jing Lyu & Zhongqi Li & Kenneth K. Y. Wong & Chung Hang Jonathan Choi & Vincent C. T. Mok & Hei-Ming Lai & Owen Randlett & Yu Hu & Ho Ko, 2023. "An optofluidic platform for interrogating chemosensory behavior and brainwide neural representation in larval zebrafish," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0196563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.