Determining the number of factors in approximate factor models by twice K-fold cross validation
Author
Abstract
Suggested Citation
DOI: 10.1016/j.econlet.2020.109149
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jushan Bai & Serena Ng, 2002.
"Determining the Number of Factors in Approximate Factor Models,"
Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
- Ma, Shujie & Linton, Oliver & Gao, Jiti, 2021.
"Estimation and inference in semiparametric quantile factor models,"
Journal of Econometrics, Elsevier, vol. 222(1), pages 295-323.
- Shujie Ma & Oliver Linton & Jiti Gao, 2017. "Estimation and inference in semiparametric quantile factor models," Monash Econometrics and Business Statistics Working Papers 8/17, Monash University, Department of Econometrics and Business Statistics.
- Ma, S. & Linton, O. & Gao, J., 2019. "Estimation and Inference in Semiparametric Quantile Factor Models," Cambridge Working Papers in Economics 1933, Faculty of Economics, University of Cambridge.
- Nicolai Meinshausen & Peter Bühlmann, 2010. "Stability selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 417-473, September.
- Seung C. Ahn & Alex R. Horenstein, 2013. "Eigenvalue Ratio Test for the Number of Factors," Econometrica, Econometric Society, vol. 81(3), pages 1203-1227, May.
- Jin, Sainan & Miao, Ke & Su, Liangjun, 2021.
"On factor models with random missing: EM estimation, inference, and cross validation,"
Journal of Econometrics, Elsevier, vol. 222(1), pages 745-777.
- Su, Liangjun & Miao, Ke & Jin, Sainan, 2019. "On Factor Models with Random Missing: EM Estimation, Inference, and Cross Validation," Economics and Statistics Working Papers 4-2019, Singapore Management University, School of Economics.
- Kapetanios, George, 2010.
"A Testing Procedure for Determining the Number of Factors in Approximate Factor Models With Large Datasets,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 28(3), pages 397-409.
- George Kapetanios, 2005. "A Testing Procedure for Determining the Number of Factors in Approximate Factor Models with Large Datasets," Working Papers 551, Queen Mary University of London, School of Economics and Finance.
- Hallin, Marc & Liska, Roman, 2007. "Determining the Number of Factors in the General Dynamic Factor Model," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 603-617, June.
- Zhang, Yongli & Yang, Yuhong, 2015. "Cross-validation for selecting a model selection procedure," Journal of Econometrics, Elsevier, vol. 187(1), pages 95-112.
- Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
- Alexei Onatski, 2010. "Determining the Number of Factors from Empirical Distribution of Eigenvalues," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1004-1016, November.
- Mehmet Caner & Xu Han, 2014. "Selecting the Correct Number of Factors in Approximate Factor Models: The Large Panel Case With Group Bridge Estimators," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(3), pages 359-374, July.
- Jia Chen & Degui Li & Oliver Linton & Zudi Lu, 2018. "Semiparametric Ultra-High Dimensional Model Averaging of Nonlinear Dynamic Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 919-932, April.
- Shujie Ma & Oliver Linton & Jiti Gao, 2017.
"Estimation and inference in semiparametric quantile factor models,"
Monash Econometrics and Business Statistics Working Papers
8/17, Monash University, Department of Econometrics and Business Statistics.
- Ma, S. & Linton, O. & Gao, J., 2019. "Estimation and Inference in Semiparametric Quantile Factor Models," Cambridge Working Papers in Economics 1939, Faculty of Economics, University of Cambridge.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Rao, Congjun & Zhang, Yue & Wen, Jianghui & Xiao, Xinping & Goh, Mark, 2023. "Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model," Energy, Elsevier, vol. 263(PC).
- Zhou, Ruichao & Wu, Jianhong, 2023. "Determining the number of change-points in high-dimensional factor models by cross-validation with matrix completion," Economics Letters, Elsevier, vol. 232(C).
- Wu, Jianhong, 2021. "Estimation of high dimensional factor model with multiple threshold-type regime shifts," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
- Esther Ruiz & Pilar Poncela, 2022. "Factor Extraction in Dynamic Factor Models: Kalman Filter Versus Principal Components," Foundations and Trends(R) in Econometrics, now publishers, vol. 12(2), pages 121-231, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019.
"A diagnostic criterion for approximate factor structure,"
Journal of Econometrics, Elsevier, vol. 212(2), pages 503-521.
- Patrick Gagliardini & Elisa Ossola & Olivier Scaillet, 2016. "A diagnostic criterion for approximate factor structure," Papers 1612.04990, arXiv.org, revised Aug 2017.
- Patrick Gagliardini & Elisa Ossola & O. Scaillet, 2016. "A Diagnostic Criterion for Approximate Factor Structure," Swiss Finance Institute Research Paper Series 16-51, Swiss Finance Institute, revised Dec 2016.
- Alain-Philippe Fortin & Patrick Gagliardini & O. Scaillet, 2022.
"Eigenvalue tests for the number of latent factors in short panels,"
Swiss Finance Institute Research Paper Series
22-81, Swiss Finance Institute.
- Alain-Philippe Fortin & Patrick Gagliardini & Olivier Scaillet, 2022. "Eigenvalue tests for the number of latent factors in short panels," Papers 2210.16042, arXiv.org.
- Yoshimasa Uematsu & Takashi Yamagata, 2019.
"Estimation of Weak Factor Models,"
DSSR Discussion Papers
96, Graduate School of Economics and Management, Tohoku University.
- Yoshimasa Uematsu & Takashi Yamagata, 2019. "Estimation of Weak Factor Models," ISER Discussion Paper 1053, Institute of Social and Economic Research, Osaka University.
- Francisco Corona & Pilar Poncela & Esther Ruiz, 2017.
"Determining the number of factors after stationary univariate transformations,"
Empirical Economics, Springer, vol. 53(1), pages 351-372, August.
- Corona, Francisco & Poncela, Maria Pilar, 2016. "Determining the number of factors after stationary univariate transformations," DES - Working Papers. Statistics and Econometrics. WS ws1602, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Lu, Xun & Su, Liangjun, 2016.
"Shrinkage estimation of dynamic panel data models with interactive fixed effects,"
Journal of Econometrics, Elsevier, vol. 190(1), pages 148-175.
- Xun Lu & Su Liangjun, 2015. "Shrinkage Estimation of Dynamic Panel Data Models with Interactive Fixed Effects," Working Papers 02-2015, Singapore Management University, School of Economics.
- Bodnar, Taras & Reiß, Markus, 2016. "Exact and asymptotic tests on a factor model in low and large dimensions with applications," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 125-151.
- Jin, Sainan & Miao, Ke & Su, Liangjun, 2021.
"On factor models with random missing: EM estimation, inference, and cross validation,"
Journal of Econometrics, Elsevier, vol. 222(1), pages 745-777.
- Su, Liangjun & Miao, Ke & Jin, Sainan, 2019. "On Factor Models with Random Missing: EM Estimation, Inference, and Cross Validation," Economics and Statistics Working Papers 4-2019, Singapore Management University, School of Economics.
- Gu, Shihao & Kelly, Bryan & Xiu, Dacheng, 2021. "Autoencoder asset pricing models," Journal of Econometrics, Elsevier, vol. 222(1), pages 429-450.
- Yunus Emre Ergemen & Carlos Vladimir Rodríguez-Caballero, 2016. "A Dynamic Multi-Level Factor Model with Long-Range Dependence," CREATES Research Papers 2016-23, Department of Economics and Business Economics, Aarhus University.
- Hindrayanto, Irma & Koopman, Siem Jan & de Winter, Jasper, 2016. "Forecasting and nowcasting economic growth in the euro area using factor models," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1284-1305.
- Steffen R. Henzel & Malte Rengel, 2017.
"Dimensions Of Macroeconomic Uncertainty: A Common Factor Analysis,"
Economic Inquiry, Western Economic Association International, vol. 55(2), pages 843-877, April.
- Steffen Henzel & Malte Rengel, 2013. "Dimensions of macroeconomic uncertainty: A common factor analysis," ifo Working Paper Series 167, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
- Henzel, Steffen R. & Rengel, Malte, 2017. "Dimensions of macroeconomic uncertainty: a common factor analysis," Munich Reprints in Economics 49932, University of Munich, Department of Economics.
- Steffen Henzel & Malte Rengel, 2014. "Dimensions of Macroeconomic Uncertainty: A Common Factor Analysis," CESifo Working Paper Series 4991, CESifo.
- Catherine Doz & Peter Fuleky, 2019.
"Dynamic Factor Models,"
Working Papers
2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
- Catherine Doz & Peter Fuleky, 2020. "Dynamic Factor Models," PSE-Ecole d'économie de Paris (Postprint) halshs-02491811, HAL.
- Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," PSE Working Papers halshs-02262202, HAL.
- Catherine Doz & Peter Fuleky, 2020. "Dynamic Factor Models," Post-Print halshs-02491811, HAL.
- Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers halshs-02262202, HAL.
- Forni, Mario & Hallin, Marc & Lippi, Marco & Zaffaroni, Paolo, 2017.
"Dynamic factor models with infinite-dimensional factor space: Asymptotic analysis,"
Journal of Econometrics, Elsevier, vol. 199(1), pages 74-92.
- Pietro Dallari & Antonio Ribba, 2015. "Dynamic Factor Models with In nite-Dimensional Factor Space: Asymptotic Analysis," Center for Economic Research (RECent) 115, University of Modena and Reggio E., Dept. of Economics "Marco Biagi".
- Mario Forni & Marc Hallin & Marco Lippi & Paolo Zaffaroni, 2016. "Dynamic Factor Models with Infinite-Dimensional Factor Space. Asymptotic Analysis," EIEF Working Papers Series 1607, Einaudi Institute for Economics and Finance (EIEF), revised Apr 2016.
- Lippi, Marco & Hallin, Marc & Forni, Mario & Zaffaroni, Paolo, 2015. "Dynamic Factor Models with Infinite-Dimensional Factor Space: Asymptotic Analysis," CEPR Discussion Papers 10618, C.E.P.R. Discussion Papers.
- Mario Forni & Marc Hallin & Marco Lippi & Paolo Zaffaroni, 2015. "Dynamic Factor Models with Infinite-Dimensional Factor Space: Asymptotic Analysis," Working Papers ECARES ECARES 2015-23, ULB -- Universite Libre de Bruxelles.
- Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
- Matteo Barigozzi & Marco Lippi & Matteo Luciani, 2014.
"Dynamic Factor Models, Cointegration and Error Correction Mechanisms,"
Working Papers ECARES
ECARES 2014-14, ULB -- Universite Libre de Bruxelles.
- Matteo Barigozzi & Marco Lippi & Matteo Luciani, 2016. "Dynamic Factor Models, Cointegration, and Error Correction Mechanisms," Finance and Economics Discussion Series 2016-018, Board of Governors of the Federal Reserve System (U.S.).
- Matteo Luciani, 2015.
"Monetary Policy and the Housing Market: A Structural Factor Analysis,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(2), pages 199-218, March.
- Matteo LUCIANI, "undated". "Monetary Policy and the Housing Market: A Structural Factor Analysis," Working Papers wp2010-7, Department of the Treasury, Ministry of the Economy and of Finance.
- Matteo Luciani, 2012. "Monetary Policy and the Housing Market: A Structural Factor Analysis," Working Papers ECARES ECARES 2012-035, ULB -- Universite Libre de Bruxelles.
- Matteo Luciani, 2013. "Monetary Policy, and the Housing Market: A Structural Factor Analysis," ULB Institutional Repository 2013/153324, ULB -- Universite Libre de Bruxelles.
- Freyaldenhoven, Simon, 2022.
"Factor models with local factors — Determining the number of relevant factors,"
Journal of Econometrics, Elsevier, vol. 229(1), pages 80-102.
- Simon Freyaldenhoven, 2021. "Factor Models with Local Factors—Determining the Number of Relevant Factors," Working Papers 21-15, Federal Reserve Bank of Philadelphia.
- Alain-Philippe Fortin & Patrick Gagliardini & Olivier Scaillet, 2023.
"Latent Factor Analysis in Short Panels,"
Papers
2306.14004, arXiv.org, revised May 2024.
- Alain-Philippe Fortin & Patrick Gagliardini & Olivier Scaillet, 2023. "Latent Factor Analysis in Short Panels," Swiss Finance Institute Research Paper Series 23-44, Swiss Finance Institute.
- Mehmet Caner & Xu Han, 2014. "Selecting the Correct Number of Factors in Approximate Factor Models: The Large Panel Case With Group Bridge Estimators," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(3), pages 359-374, July.
- Simon Freyaldenhoven, 2020. "Identification Through Sparsity in Factor Models," Working Papers 20-25, Federal Reserve Bank of Philadelphia.
More about this item
Keywords
Approximate factor models; K-fold cross validation; Consistency; Finite sample performance;All these keywords.
JEL classification:
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
- C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:191:y:2020:i:c:s0165176520301191. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.