IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0190506.html
   My bibliography  Save this article

Land-use change in oil palm dominated tropical landscapes—An agent-based model to explore ecological and socio-economic trade-offs

Author

Listed:
  • Claudia Dislich
  • Elisabeth Hettig
  • Jan Salecker
  • Johannes Heinonen
  • Jann Lay
  • Katrin M Meyer
  • Kerstin Wiegand
  • Suria Tarigan

Abstract

Land-use changes have dramatically transformed tropical landscapes. We describe an ecological-economic land-use change model as an integrated, exploratory tool used to analyze how tropical land-use change affects ecological and socio-economic functions. The model analysis seeks to determine what kind of landscape mosaic can improve the ensemble of ecosystem functioning, biodiversity, and economic benefit based on the synergies and trade-offs that we have to account for. More specifically, (1) how do specific ecosystem functions, such as carbon storage, and economic functions, such as household consumption, relate to each other? (2) How do external factors, such as the output prices of crops, affect these relationships? (3) How do these relationships change when production inefficiency differs between smallholder farmers and learning is incorporated? We initialize the ecological-economic model with artificially generated land-use maps parameterized to our study region. The economic sub-model simulates smallholder land-use management decisions based on a profit maximization assumption. Each household determines factor inputs for all household fields and decides on land-use change based on available wealth. The ecological sub-model includes a simple account of carbon sequestration in above-ground and below-ground vegetation. We demonstrate model capabilities with results on household consumption and carbon sequestration from different output price and farming efficiency scenarios. The overall results reveal complex interactions between the economic and ecological spheres. For instance, model scenarios with heterogeneous crop-specific household productivity reveal a comparatively high inertia of land-use change. Our model analysis even shows such an increased temporal stability in landscape composition and carbon stocks of the agricultural area under dynamic price trends. These findings underline the utility of ecological-economic models, such as ours, to act as exploratory tools which can advance our understanding of the mechanisms underlying the trade-offs and synergies of ecological and economic functions in tropical landscapes.

Suggested Citation

  • Claudia Dislich & Elisabeth Hettig & Jan Salecker & Johannes Heinonen & Jann Lay & Katrin M Meyer & Kerstin Wiegand & Suria Tarigan, 2018. "Land-use change in oil palm dominated tropical landscapes—An agent-based model to explore ecological and socio-economic trade-offs," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-20, January.
  • Handle: RePEc:plo:pone00:0190506
    DOI: 10.1371/journal.pone.0190506
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0190506
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0190506&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0190506?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fischer, Rico & Bohn, Friedrich & Dantas de Paula, Mateus & Dislich, Claudia & Groeneveld, Jürgen & Gutiérrez, Alvaro G. & Kazmierczak, Martin & Knapp, Nikolai & Lehmann, Sebastian & Paulick, Sebastia, 2016. "Lessons learned from applying a forest gap model to understand ecosystem and carbon dynamics of complex tropical forests," Ecological Modelling, Elsevier, vol. 326(C), pages 124-133.
    2. Stephan Klasen & Jan Priebe & Robert Rudolf, 2013. "Cash crop choice and income dynamics in rural areas: evidence for post-crisis Indonesia," Agricultural Economics, International Association of Agricultural Economists, vol. 44(3), pages 349-364, May.
    3. Euler, Michael & Krishna, Vijesh & Schwarze, Stefan & Siregar, Hermanto & Qaim, Matin, 2017. "Oil Palm Adoption, Household Welfare, and Nutrition Among Smallholder Farmers in Indonesia," World Development, Elsevier, vol. 93(C), pages 219-235.
    4. Elisabeth Hettig & Jann Lay & Kacana Sipangule, 2016. "Drivers of Households’ Land-Use Decisions: A Critical Review of Micro-Level Studies in Tropical Regions," Land, MDPI, vol. 5(4), pages 1-32, October.
    5. Berger, Thomas, 2001. "Agent-based spatial models applied to agriculture: a simulation tool for technology diffusion, resource use changes and policy analysis," Agricultural Economics, Blackwell, vol. 25(2-3), pages 245-260, September.
    6. Andrew D. Barnes & Malte Jochum & Steffen Mumme & Noor Farikhah Haneda & Achmad Farajallah & Tri Heru Widarto & Ulrich Brose, 2014. "Consequences of tropical land use for multitrophic biodiversity and ecosystem functioning," Nature Communications, Nature, vol. 5(1), pages 1-7, December.
    7. Yann Clough & Vijesh V. Krishna & Marife D. Corre & Kevin Darras & Lisa H. Denmead & Ana Meijide & Stefan Moser & Oliver Musshoff & Stefanie Steinebach & Edzo Veldkamp & Kara Allen & Andrew D. Barnes , 2016. "Land-use choices follow profitability at the expense of ecological functions in Indonesian smallholder landscapes," Nature Communications, Nature, vol. 7(1), pages 1-12, December.
    8. Elmar Kiesling & Markus Günther & Christian Stummer & Lea Wakolbinger, 2012. "Agent-based simulation of innovation diffusion: a review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(2), pages 183-230, June.
    9. Kelley, Hugh & Evans, Tom, 2011. "The relative influences of land-owner and landscape heterogeneity in an agent-based model of land-use," Ecological Economics, Elsevier, vol. 70(6), pages 1075-1087, April.
    10. J. Taylor & Irma Adelman, 2003. "Agricultural Household Models: Genesis, Evolution, and Extensions," Review of Economics of the Household, Springer, vol. 1(1), pages 33-58, January.
    11. Euler, Michael & Hoffmann, Munir P. & Fathoni, Zakky & Schwarze, Stefan, 2016. "Exploring yield gaps in smallholder oil palm production systems in eastern Sumatra, Indonesia," Agricultural Systems, Elsevier, vol. 146(C), pages 111-119.
    12. Vijesh Krishna & Michael Euler & Hermanto Siregar & Matin Qaim, 2017. "Differential livelihood impacts of oil palm expansion in Indonesia," Agricultural Economics, International Association of Agricultural Economists, vol. 48(5), pages 639-653, September.
    13. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ogahara, Zoë & Jespersen, Kristjan & Theilade, Ida & Nielsen, Martin Reinhard, 2022. "Review of smallholder palm oil sustainability reveals limited positive impacts and identifies key implementation and knowledge gaps," Land Use Policy, Elsevier, vol. 120(C).
    2. Salecker, Jan & Dislich, Claudia & Wiegand, Kerstin & Meyer, Katrin M. & Pe'er, Guy, 2019. "EFForTS-LGraf: A landscape generator for creating smallholder-driven land-use mosaics," EFForTS Discussion Paper Series 29, University of Goettingen, Collaborative Research Centre 990 "EFForTS, Ecological and Socioeconomic Functions of Tropical Lowland Rainforest Transformation Systems (Sumatra, Indonesia)".
    3. Tabe-Ojong, Martin Paul Jr. & Ordway, Elsa M. & Nkongho, Raymond N. & Molua, Ernest L., 2022. "Oil palm expansion among non-industrial producers in Cameroon: Potentials for synergy between agro-economic gains and ecological safeguards," Forest Policy and Economics, Elsevier, vol. 135(C).
    4. Sivabalan Kaniapan & Suhaimi Hassan & Hamdan Ya & Kartikeyan Patma Nesan & Mohammad Azeem, 2021. "The Utilisation of Palm Oil and Oil Palm Residues and the Related Challenges as a Sustainable Alternative in Biofuel, Bioenergy, and Transportation Sector: A Review," Sustainability, MDPI, vol. 13(6), pages 1-25, March.
    5. Kopp, Thomas & Salecker, Jan, 2020. "How traders influence their neighbours: Modelling social evolutionary processes and peer effects in agricultural trade networks," Journal of Economic Dynamics and Control, Elsevier, vol. 117(C).
    6. Kaushal , Kevin R. & Rosendahl, Knut Einar, 2019. "Optimal REDD+ in the carbon market," Working Paper Series 3-2019, Norwegian University of Life Sciences, School of Economics and Business.
    7. Langhammer, Maria & Thober, Jule & Lange, Martin & Frank, Karin & Grimm, Volker, 2019. "Agricultural landscape generators for simulation models: A review of existing solutions and an outline of future directions," Ecological Modelling, Elsevier, vol. 393(C), pages 135-151.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kubitza, Christoph & Dib, Jonida Bou & Kopp, Thomas & Krishna, Vijesh V. & Nuryartono, Nunung & Qaim, Matin & Romero, Miriam & Klasen, Stephan, 2019. "Labor savings in agriculture and inequality at different spatial scales: The expansion of oil palm in Indonesia," EFForTS Discussion Paper Series 26, University of Goettingen, Collaborative Research Centre 990 "EFForTS, Ecological and Socioeconomic Functions of Tropical Lowland Rainforest Transformation Systems (Sumatra, Indonesia)".
    2. Kubitza, Christoph & Krishna, Vijesh V. & Urban, Kira & Alamsyah, Zulkifli & Qaim, Matin, 2018. "Land Property Rights, Agricultural Intensification, and Deforestation in Indonesia," Ecological Economics, Elsevier, vol. 147(C), pages 312-321.
    3. Sibhatu, Kibrom T. & Steinhübel, Linda & Siregar, Hermanto & Qaim, Matin & Wollni, Meike, 2022. "Spatial heterogeneity in smallholder oil palm production," Forest Policy and Economics, Elsevier, vol. 139(C).
    4. Ogahara, Zoë & Jespersen, Kristjan & Theilade, Ida & Nielsen, Martin Reinhard, 2022. "Review of smallholder palm oil sustainability reveals limited positive impacts and identifies key implementation and knowledge gaps," Land Use Policy, Elsevier, vol. 120(C).
    5. Bou Dib, Jonida & Alamsyah, Zulkifli & Qaim, Matin, 2018. "Land-use change and income inequality in rural Indonesia," Forest Policy and Economics, Elsevier, vol. 94(C), pages 55-66.
    6. Nadjia Mehraban & Christoph Kubitza & Zulkifli Alamsyah & Matin Qaim, 2021. "Oil palm cultivation, household welfare, and exposure to economic risk in the Indonesian small farm sector," Journal of Agricultural Economics, Wiley Blackwell, vol. 72(3), pages 901-915, September.
    7. Chrisendo, Daniel & Krishna, Vijesh V. & Siregar, Hermanto & Qaim, Matin, 2020. "Land-use change, nutrition, and gender roles in Indonesian farm households," Forest Policy and Economics, Elsevier, vol. 118(C).
    8. Noeldeke, Beatrice & Winter, Etti & Ntawuhiganayo, Elisée Bahati, 2022. "Representing human decision-making in agent-based simulation models: Agroforestry adoption in rural Rwanda," Ecological Economics, Elsevier, vol. 200(C).
    9. Thomas Kopp & Richard J. Sexton, 2021. "Farmers, Traders, and Processors: Buyer Market Power and Double Marginalization in Indonesia," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(2), pages 543-568, March.
    10. Tabe-Ojong, Martin Paul Jr. & Ordway, Elsa M. & Nkongho, Raymond N. & Molua, Ernest L., 2022. "Oil palm expansion among non-industrial producers in Cameroon: Potentials for synergy between agro-economic gains and ecological safeguards," Forest Policy and Economics, Elsevier, vol. 135(C).
    11. Ran Sun & James Nolan & Suren Kulshreshtha, 2022. "Agent-based modeling of policy induced agri-environmental technology adoption," SN Business & Economics, Springer, vol. 2(8), pages 1-26, August.
    12. Petri, Heinrich & Hendrawan, Dienda & Bähr, Tobias & Asnawi, Rosyani & Mußhoff, Oliver & Wollni, Meike & Faust, Heiko, 2022. "The challenges Indonesian oil palm smallholders face when replanting becomes necessary, and how they can be supported: A review," EFForTS Discussion Paper Series 36, University of Goettingen, Collaborative Research Centre 990 "EFForTS, Ecological and Socioeconomic Functions of Tropical Lowland Rainforest Transformation Systems (Sumatra, Indonesia)".
    13. Kubitza, Christoph & Vijesh, Krishna V. & Klasen, Stephan & Kopp, Thomas & Nuryartono, Nunung & Qaim, Matin, 2021. "Labor Displacement in Agriculture: The Case of Oil Palm in Indonesia," 2021 Conference, August 17-31, 2021, Virtual 314982, International Association of Agricultural Economists.
    14. Kubitza, Christoph & Gehrke, Esther, 2018. "Why does a labor-saving technology decrease fertility rates? Evidence from the oil palm boom in Indonesia," EFForTS Discussion Paper Series 22, University of Goettingen, Collaborative Research Centre 990 "EFForTS, Ecological and Socioeconomic Functions of Tropical Lowland Rainforest Transformation Systems (Sumatra, Indonesia)".
    15. Salecker, Jan & Dislich, Claudia & Wiegand, Kerstin & Meyer, Katrin M. & Pe'er, Guy, 2019. "EFForTS-LGraf: A landscape generator for creating smallholder-driven land-use mosaics," EFForTS Discussion Paper Series 29, University of Goettingen, Collaborative Research Centre 990 "EFForTS, Ecological and Socioeconomic Functions of Tropical Lowland Rainforest Transformation Systems (Sumatra, Indonesia)".
    16. Bou Dib, Jonida & Krishna, Vijesh V. & Alamsyah, Zulkifli & Qaim, Matin, 2018. "Land-use change and livelihoods of non-farm households: The role of income from employment in oil palm and rubber in rural Indonesia," Land Use Policy, Elsevier, vol. 76(C), pages 828-838.
    17. Krishna, Vijesh V. & Kubitza, Christoph & Pascual, Unai & Qaim, Matin, 2017. "Land markets, Property rights, and Deforestation: Insights from Indonesia," World Development, Elsevier, vol. 99(C), pages 335-349.
    18. Constanza Fosco, 2012. "Spatial Difusion and Commuting Flows," Documentos de Trabajo en Economia y Ciencia Regional 30, Universidad Catolica del Norte, Chile, Department of Economics, revised Sep 2012.
    19. Veronique Beckers & Jeroen Beckers & Matthias Vanmaercke & Etienne Van Hecke & Anton Van Rompaey & Nicolas Dendoncker, 2018. "Modelling Farm Growth and Its Impact on Agricultural Land Use: A Country Scale Application of an Agent-Based Model," Land, MDPI, vol. 7(3), pages 1-19, September.
    20. Dislich, Claudia & Hettig, Elisabeth & Heinonen, Johannes & Lay, Jann & Meyer, Katrin M. & Tarigan, Suria & Wiegand, Kerstin, 2015. "Towards an integrated ecological-economic land-use change model," EFForTS Discussion Paper Series 17, University of Goettingen, Collaborative Research Centre 990 "EFForTS, Ecological and Socioeconomic Functions of Tropical Lowland Rainforest Transformation Systems (Sumatra, Indonesia)".

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0190506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.