IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v175y2012i2p637-656.html
   My bibliography  Save this article

A Bayesian non‐linear model for forecasting insurance loss payments

Author

Listed:
  • Yanwei Zhang
  • Vanja Dukic
  • James Guszcza

Abstract

No abstract is available for this item.

Suggested Citation

  • Yanwei Zhang & Vanja Dukic & James Guszcza, 2012. "A Bayesian non‐linear model for forecasting insurance loss payments," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(2), pages 637-656, April.
  • Handle: RePEc:bla:jorssa:v:175:y:2012:i:2:p:637-656
    DOI: j.1467-985X.2011.01002.x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1467-985X.2011.01002.x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/j.1467-985X.2011.01002.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    2. Ioannis Badounas & Georgios Pitselis, 2020. "Loss Reserving Estimation With Correlated Run-Off Triangles in a Quantile Longitudinal Model," Risks, MDPI, vol. 8(1), pages 1-26, February.
    3. Boratyńska, Agata, 2017. "Robust Bayesian estimation and prediction of reserves in exponential model with quadratic variance function," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 135-140.
    4. Yves L. Grize, 2015. "Applications of Statistics in the Field of General Insurance: An Overview," International Statistical Review, International Statistical Institute, vol. 83(1), pages 135-159, April.
    5. Dong, A.X.D. & Chan, J.S.K., 2013. "Bayesian analysis of loss reserving using dynamic models with generalized beta distribution," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 355-365.
    6. Alice X. D. Dong & Jennifer S. K. Chan & Gareth W. Peters, 2014. "Risk Margin Quantile Function Via Parametric and Non-Parametric Bayesian Quantile Regression," Papers 1402.2492, arXiv.org.
    7. Karthik Sriram & Peng Shi, 2021. "Stochastic loss reserving: A new perspective from a Dirichlet model," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(1), pages 195-230, March.
    8. Wenhui Zhang & Yongmin Su & Ruimin Ke & Xinqiang Chen, 2018. "Evaluating the influential priority of the factors on insurance loss of public transit," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-11, January.
    9. Lally, Nathan & Hartman, Brian, 2018. "Estimating loss reserves using hierarchical Bayesian Gaussian process regression with input warping," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 124-140.
    10. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2016. "Stochastic loss reserving with dependence: A flexible multivariate Tweedie approach," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 63-78.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:175:y:2012:i:2:p:637-656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.