IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0189863.html
   My bibliography  Save this article

Reliability demonstration test for load-sharing systems with exponential and Weibull components

Author

Listed:
  • Jianyu Xu
  • Qingpei Hu
  • Dan Yu
  • Min Xie

Abstract

Conducting a Reliability Demonstration Test (RDT) is a crucial step in production. Products are tested under certain schemes to demonstrate whether their reliability indices reach pre-specified thresholds. Test schemes for RDT have been studied in different situations, e.g., lifetime testing, degradation testing and accelerated testing. Systems designed with several structures are also investigated in many RDT plans. Despite the availability of a range of test plans for different systems, RDT planning for load-sharing systems hasn’t yet received the attention it deserves. In this paper, we propose a demonstration method for two specific types of load-sharing systems with components subject to two distributions: exponential and Weibull. Based on the assumptions and interpretations made in several previous works on such load-sharing systems, we set the mean time to failure (MTTF) of the total system as the demonstration target. We represent the MTTF as a summation of mean time between successive component failures. Next, we introduce generalized test statistics for both the underlying distributions. Finally, RDT plans for the two types of systems are established on the basis of these test statistics.

Suggested Citation

  • Jianyu Xu & Qingpei Hu & Dan Yu & Min Xie, 2017. "Reliability demonstration test for load-sharing systems with exponential and Weibull components," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-19, December.
  • Handle: RePEc:plo:pone00:0189863
    DOI: 10.1371/journal.pone.0189863
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0189863
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0189863&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0189863?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Min Kim & Bong-Jin Yum, 2009. "Reliability acceptance sampling plans for the Weibull distribution under accelerated Type-I censoring," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(1), pages 11-20.
    2. Zhao, Xian & Wang, Xiaoyue & Sun, Ge, 2015. "Start-up demonstration tests with sparse connection," European Journal of Operational Research, Elsevier, vol. 243(3), pages 865-873.
    3. Zhang, Chunhua & Lu, Xiang & Tan, Yuanyuan & Wang, Yashun, 2015. "Reliability demonstration methodology for products with Gamma Process by optimal accelerated degradation testing," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 369-377.
    4. Saul Blumenthal & J. Arthur Greenwood & Leon H. Herbach, 1984. "Series Systems and Reliability Demonstration Tests," Operations Research, INFORMS, vol. 32(3), pages 641-648, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qin, Shuidan & Wang, Bing Xing & Tsai, Tzong-Ru & Wang, Xiaofei, 2023. "The prediction of remaining useful lifetime for the Weibull k-out-of-n load-sharing system," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    2. Azeem Ali & Sanku Dey & Haseeb Ur Rehman & Zeeshan Ali, 2019. "On Bayesian reliability estimation of a 1-out-of-k load sharing system model of modified Burr-III distribution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 1052-1081, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Yao & Liao, Haitao & Huang, Zhiyi, 2021. "Optimal degradation-based hybrid double-stage acceptance sampling plan for a heterogeneous product," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    2. Yaping Li & Enrico Zio & Ershun Pan, 2021. "An MEWMA-based segmental multivariate hidden Markov model for degradation assessment and prediction," Journal of Risk and Reliability, , vol. 235(5), pages 831-844, October.
    3. Huang, Jianlin & Golubović, Dušan S & Koh, Sau & Yang, Daoguo & Li, Xiupeng & Fan, Xuejun & Zhang, G.Q., 2016. "Lumen degradation modeling of white-light LEDs in step stress accelerated degradation test," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 152-159.
    4. Wang, Huan & Wang, Guan-jun & Duan, Feng-jun, 2016. "Planning of step-stress accelerated degradation test based on the inverse Gaussian process," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 97-105.
    5. Sun, Bo & Fan, Xuejun & Ye, Huaiyu & Fan, Jiajie & Qian, Cheng & van Driel, Williem & Zhang, Guoqi, 2017. "A novel lifetime prediction for integrated LED lamps by electronic-thermal simulation," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 14-21.
    6. Saul Blumenthal, 1992. "Reliability acceptance testing for new series systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(4), pages 579-597, June.
    7. Lin, Cong & Zeng, Zhaoyang & Zhou, Yan & Xu, Ming & Ren, Zhanyong, 2019. "A lower bound of reliability calculating method for lattice system with non-homogeneous components," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 36-46.
    8. Zhao, Xian & Guo, Xiaoxin & Wang, Xiaoyue, 2018. "Reliability and maintenance policies for a two-stage shock model with self-healing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 185-194.
    9. Gera, Amos E., 2018. "Simultaneous demonstration tests involving sparse failures," Statistics & Probability Letters, Elsevier, vol. 135(C), pages 26-31.
    10. Redinz, JoséArnaldo & de Magalhães, AglaéCristina Navarro, 1997. "Criticality of two- and three-spin Ising model in an external field on a fractal family," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 246(1), pages 27-44.
    11. Liling Ge & Yingjie Zhang, 2019. "Improving operational reliability of manufacturing systems by process optimization via survival signatures," Journal of Risk and Reliability, , vol. 233(3), pages 444-454, June.
    12. Elezović-Hadžić, S. & Milošević, S. & Capel, H.W. & Wiersma, G.L., 1988. "Exact renormalization group treatment of the piecewise directed random walks on fractals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 150(2), pages 402-418.
    13. Kim, Seong-Joon & Mun, Byeong Min & Bae, Suk Joo, 2019. "A cost-driven reliability demonstration plan based on accelerated degradation tests," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 226-239.
    14. Wang, Xiaofei & Wang, Bing Xing & Hong, Yili & Jiang, Pei Hua, 2021. "Degradation data analysis based on gamma process with random effects," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1200-1208.
    15. Luo, Wei & Zhang, Chun-hua & Chen, Xun & Tan, Yuan-yuan, 2015. "Accelerated reliability demonstration under competing failure modes," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 75-84.
    16. Elezović-Hadz̆ić, S. & Milos̆ević, S. & Capel, H.W. & Post, Th., 1991. "Critical exponent γ for a class of directed walks at the fractal to Euclidean crossover," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 179(1), pages 39-61.
    17. Woo, Seong-woo & Pecht, Michael & O'Neal, Dennis L., 2020. "Reliability design and case study of the domestic compressor subjected to repetitive internal stresses," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    18. Dong, Qinglai & Cui, Lirong, 2019. "A study on stochastic degradation process models under different types of failure Thresholds," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 202-212.
    19. Wang, Xiaoyue & Zhao, Xian & Wang, Siqi & Sun, Leping, 2020. "Reliability and maintenance for performance-balanced systems operating in a shock environment," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    20. Zheng, Huiling & Yang, Jun & Xu, Houbao & Zhao, Yu, 2023. "Reliability acceptance sampling plan for degraded products subject to Wiener process with unit heterogeneity," Reliability Engineering and System Safety, Elsevier, vol. 229(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0189863. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.