IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v42y2008i3p191-203.html
   My bibliography  Save this article

Estimation on stated-preference experiments constructed from revealed-preference choices

Author

Listed:
  • Train, Kenneth
  • Wilson, Wesley W.

Abstract

Constructing stated-preference (sp) experiments from a choice that the respondent made in a revealed-preference setting can enhance the realism of the sp task and the efficacy of preference revelation. However, the practice creates dependence between the sp attributes and unobserved factors, contrary to the independence assumption that is maintained for standard estimation procedures. We describe a general estimation method that accounts for this non-independence and give specific examples based on standard and mixed logit specifications of utility. We show conditions under which standard estimation methods are consistent despite the non-independence. We illustrate the general methodology through an application to shippers' choice of route and mode along the Columbia/Snake River system.

Suggested Citation

  • Train, Kenneth & Wilson, Wesley W., 2008. "Estimation on stated-preference experiments constructed from revealed-preference choices," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 191-203, March.
  • Handle: RePEc:eee:transb:v:42:y:2008:i:3:p:191-203
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(07)00048-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sándor, Zsolt & Train, Kenneth, 2004. "Quasi-random simulation of discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 38(4), pages 313-327, May.
    2. Bhat, Chandra R., 2001. "Quasi-random maximum simulated likelihood estimation of the mixed multinomial logit model," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 677-693, August.
    3. Dubin, Jeffrey A & McFadden, Daniel L, 1984. "An Econometric Analysis of Residential Electric Appliance Holdings and Consumption," Econometrica, Econometric Society, vol. 52(2), pages 345-362, March.
    4. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387.
    5. David A. Hensher, 2006. "How do respondents process stated choice experiments? Attribute consideration under varying information load," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(6), pages 861-878.
    6. Richard W. Blundell & James L. Powell, 2004. "Endogeneity in Semiparametric Binary Response Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 71(3), pages 655-679.
    7. McFadden, Daniel, 1989. "A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration," Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
    8. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    9. Brownstone, David & Bunch, David S. & Train, Kenneth, 2000. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 315-338, June.
    10. Steven Berry & James Levinsohn & Ariel Pakes, 2004. "Differentiated Products Demand Systems from a Combination of Micro and Macro Data: The New Car Market," Journal of Political Economy, University of Chicago Press, vol. 112(1), pages 68-105, February.
    11. Andrew A. Goett & Kathleen Hudson & Kenneth E. Train, 2000. "Customers' Choice Among Retail Energy Suppliers: The Willingness-to-Pay for Service Attributes," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 1-28.
    12. Broniarczyk, Susan M & Alba, Joseph W, 1994. "The Role of Consumers' Intuitions in Inference Making," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 21(3), pages 393-407, December.
    13. Anas, Alex & Feng, Cheng Min, 1988. "Invariance of expected utilities in logit models," Economics Letters, Elsevier, vol. 27(1), pages 41-45.
    14. Shinghal, Nalin & Fowkes, Tony, 2002. "Freight mode choice and adaptive stated preferences," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 38(5), pages 367-378, September.
    15. Louviere,Jordan J. & Hensher,David A. & Swait,Joffre D. With contributions by-Name:Adamowicz,Wiktor, 2000. "Stated Choice Methods," Cambridge Books, Cambridge University Press, number 9780521788304.
    16. Caussade, Sebastián & Ortúzar, Juan de Dios & Rizzi, Luis I. & Hensher, David A., 2005. "Assessing the influence of design dimensions on stated choice experiment estimates," Transportation Research Part B: Methodological, Elsevier, vol. 39(7), pages 621-640, August.
    17. Hensher, David A. & Rose, John M., 2007. "Development of commuter and non-commuter mode choice models for the assessment of new public transport infrastructure projects: A case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(5), pages 428-443, June.
    18. Hess, Stephane & Train, Kenneth E. & Polak, John W., 2006. "On the use of a Modified Latin Hypercube Sampling (MLHS) method in the estimation of a Mixed Logit Model for vehicle choice," Transportation Research Part B: Methodological, Elsevier, vol. 40(2), pages 147-163, February.
    19. Greene, William H. & Hensher, David A. & Rose, John, 2006. "Accounting for heterogeneity in the variance of unobserved effects in mixed logit models," Transportation Research Part B: Methodological, Elsevier, vol. 40(1), pages 75-92, January.
    20. Bhat, Chandra R. & Castelar, Saul, 2002. "A unified mixed logit framework for modeling revealed and stated preferences: formulation and application to congestion pricing analysis in the San Francisco Bay area," Transportation Research Part B: Methodological, Elsevier, vol. 36(7), pages 593-616, August.
    21. David A. Hensher, 2004. "Identifying the Influence of Stated Choice Design Dimensionality on Willingness to Pay for Travel Time Savings," Journal of Transport Economics and Policy, University of Bath, vol. 38(3), pages 425-446, September.
    22. David Hensher & Nina Shore & Kenneth Train, 2005. "Households’ Willingness to Pay for Water Service Attributes," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 32(4), pages 509-531, December.
    23. David Hensher & Nina Shore & Kenneth Train, 2006. "Water Supply Security and Willingness to Pay to Avoid Drought Restrictions," The Economic Record, The Economic Society of Australia, vol. 82(256), pages 56-66, March.
    24. H C W L Williams, 1977. "On the Formation of Travel Demand Models and Economic Evaluation Measures of User Benefit," Environment and Planning A, , vol. 9(3), pages 285-344, March.
    25. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387.
    26. Brownstone, David & Bunch, David S. & Train, Kenneth, 2000. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 315-338, June.
    27. Rivers, Douglas & Vuong, Quang H., 1988. "Limited information estimators and exogeneity tests for simultaneous probit models," Journal of Econometrics, Elsevier, vol. 39(3), pages 347-366, November.
    28. J. Miguel Villas-Boas & Russell S. Winer, 1999. "Endogeneity in Brand Choice Models," Management Science, INFORMS, vol. 45(10), pages 1324-1338, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bliemer, Michiel C.J. & Rose, John M., 2011. "Experimental design influences on stated choice outputs: An empirical study in air travel choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(1), pages 63-79, January.
    2. Yang, Chih-Wen & Sung, Yen-Ching, 2010. "Constructing a mixed-logit model with market positioning to analyze the effects of new mode introduction," Journal of Transport Geography, Elsevier, vol. 18(1), pages 175-182.
    3. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).
    4. Fosgerau, Mogens & Bierlaire, Michel, 2007. "A practical test for the choice of mixing distribution in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 784-794, August.
    5. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    6. Haghani, Milad & Sarvi, Majid & Shahhoseini, Zahra, 2015. "Accommodating taste heterogeneity and desired substitution pattern in exit choices of pedestrian crowd evacuees using a mixed nested logit model," Journal of choice modelling, Elsevier, vol. 16(C), pages 58-68.
    7. Helveston, John Paul & Feit, Elea McDonnell & Michalek, Jeremy J., 2018. "Pooling stated and revealed preference data in the presence of RP endogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 70-89.
    8. Rose, John M. & Hensher, David A. & Caussade, Sebastian & Ortúzar, Juan de Dios & Jou, Rong-Chang, 2009. "Identifying differences in willingness to pay due to dimensionality in stated choice experiments: a cross country analysis," Journal of Transport Geography, Elsevier, vol. 17(1), pages 21-29.
    9. Martin Achtnicht, 2012. "German car buyers’ willingness to pay to reduce CO 2 emissions," Climatic Change, Springer, vol. 113(3), pages 679-697, August.
    10. David Hensher & William Greene, 2003. "The Mixed Logit model: The state of practice," Transportation, Springer, vol. 30(2), pages 133-176, May.
    11. Amador, Francisco Javier & González, Rosa Marina & Ramos-Real, Francisco Javier, 2013. "Supplier choice and WTP for electricity attributes in an emerging market: The role of perceived past experience, environmental concern and energy saving behavior," Energy Economics, Elsevier, vol. 40(C), pages 953-966.
    12. Deka, Devajyoti & Carnegie, Jon, 2021. "Predicting transit mode choice of New Jersey workers commuting to New York City from a stated preference survey," Journal of Transport Geography, Elsevier, vol. 91(C).
    13. Stephane Hess & John W. Polak, 2004. "An analysis of parking behaviour using discrete choice models calibrated on SP datasets," ERSA conference papers ersa04p60, European Regional Science Association.
    14. Hensher, David A., 2008. "Empirical approaches to combining revealed and stated preference data: Some recent developments with reference to urban mode choice," Research in Transportation Economics, Elsevier, vol. 23(1), pages 23-29, January.
    15. Amil Petrin & Kenneth Train, 2003. "Omitted Product Attributes in Discrete Choice Models," NBER Working Papers 9452, National Bureau of Economic Research, Inc.
    16. Joan L. Walker & Moshe Ben-Akiva & Denis Bolduc, 2007. "Identification of parameters in normal error component logit-mixture (NECLM) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(6), pages 1095-1125.
    17. Bliemer, Michiel C.J. & Rose, John M., 2010. "Construction of experimental designs for mixed logit models allowing for correlation across choice observations," Transportation Research Part B: Methodological, Elsevier, vol. 44(6), pages 720-734, July.
    18. Nakamura, A., 2011. "Estimating switching costs after introducing Fixed-Mobile Convergence in Japan," Information Economics and Policy, Elsevier, vol. 23(1), pages 59-71, March.
    19. Yu, Jie & Goos, Peter & Vandebroek, Martina, 2010. "Comparing different sampling schemes for approximating the integrals involved in the efficient design of stated choice experiments," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1268-1289, December.
    20. Stephane Hess & John Rose, 2012. "Can scale and coefficient heterogeneity be separated in random coefficients models?," Transportation, Springer, vol. 39(6), pages 1225-1239, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:42:y:2008:i:3:p:191-203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.