IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v43y2009i1p36-56.html
   My bibliography  Save this article

Specification, estimation and validation of a pedestrian walking behavior model

Author

Listed:
  • Robin, Th.
  • Antonini, G.
  • Bierlaire, M.
  • Cruz, J.

Abstract

We propose and validate a model for pedestrian walking behavior, based on discrete choice modeling. Two main types of behavior are identified: unconstrained and constrained. By unconstrained, we refer to behavior patterns which are independent from other individuals. The constrained patterns are captured by a leader-follower model and by a collision avoidance model. The spatial correlation between the alternatives is captured by a cross nested logit model. The model is estimated by maximum likelihood estimation on a real data set of pedestrian trajectories, manually tracked from video sequences. The model is successfully validated using a bi-directional flow data set, collected in controlled experimental conditions at Delft university.

Suggested Citation

  • Robin, Th. & Antonini, G. & Bierlaire, M. & Cruz, J., 2009. "Specification, estimation and validation of a pedestrian walking behavior model," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 36-56, January.
  • Handle: RePEc:eee:transb:v:43:y:2009:i:1:p:36-56
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(08)00076-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blue, Victor J. & Adler, Jeffrey L., 2001. "Cellular automata microsimulation for modeling bi-directional pedestrian walkways," Transportation Research Part B: Methodological, Elsevier, vol. 35(3), pages 293-312, March.
    2. Nagai, Ryoichi & Fukamachi, Masahiro & Nagatani, Takashi, 2005. "Experiment and simulation for counterflow of people going on all fours," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 358(2), pages 516-528.
    3. Abbe, E. & Bierlaire, M. & Toledo, T., 2007. "Normalization and correlation of cross-nested logit models," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 795-808, August.
    4. Dellaert, B.G.C. & Arentze, T. & Bierlaire, M. & Borgers, A. & Timmermans, H.J.P., 1997. "Investigating consumers' tendency to combine multiple shopping purposes and destinations," Discussion Paper 1997-94, Tilburg University, Center for Economic Research.
    5. Dirk Helbing & Lubos Buzna & Anders Johansson & Torsten Werner, 2005. "Self-Organized Pedestrian Crowd Dynamics: Experiments, Simulations, and Design Solutions," Transportation Science, INFORMS, vol. 39(1), pages 1-24, February.
    6. Antonini, Gianluca & Bierlaire, Michel & Weber, Mats, 2006. "Discrete choice models of pedestrian walking behavior," Transportation Research Part B: Methodological, Elsevier, vol. 40(8), pages 667-687, September.
    7. Wen, Chieh-Hua & Koppelman, Frank S., 2001. "The generalized nested logit model," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 627-641, August.
    8. Gentry Lee, 1966. "A Generalization of Linear Car-Following Theory," Operations Research, INFORMS, vol. 14(4), pages 595-606, August.
    9. Michel Bierlaire, 2006. "A theoretical analysis of the cross-nested logit model," Annals of Operations Research, Springer, vol. 144(1), pages 287-300, April.
    10. G. F. Newell, 1961. "Nonlinear Effects in the Dynamics of Car Following," Operations Research, INFORMS, vol. 9(2), pages 209-229, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flötteröd, Gunnar & Lämmel, Gregor, 2015. "Bidirectional pedestrian fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 194-212.
    2. Abdelghany, Ahmed & Abdelghany, Khaled & Mahmassani, Hani, 2016. "A hybrid simulation-assignment modeling framework for crowd dynamics in large-scale pedestrian facilities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 159-176.
    3. Qingyan Ning & Maosheng Li, 2022. "Modeling Pedestrian Detour Behavior By-Passing Conflict Areas," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    4. Tinessa, Fiore & Marzano, Vittorio & Papola, Andrea, 2020. "Mixing distributions of tastes with a Combination of Nested Logit (CoNL) kernel: Formulation and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 1-23.
    5. Hänseler, Flurin S. & Bierlaire, Michel & Farooq, Bilal & Mühlematter, Thomas, 2014. "A macroscopic loading model for time-varying pedestrian flows in public walking areas," Transportation Research Part B: Methodological, Elsevier, vol. 69(C), pages 60-80.
    6. Drabas, Tomasz & Wu, Cheng-Lung, 2013. "Modelling air carrier choices with a Segment Specific Cross Nested Logit model," Journal of Air Transport Management, Elsevier, vol. 32(C), pages 8-16.
    7. Ji, Xiangfeng & Zhang, Jian & Ran, Bin, 2013. "A study on pedestrian choice between stairway and escalator in the transfer station based on floor field cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5089-5100.
    8. Tinessa, Fiore, 2021. "Closed-form random utility models with mixture distributions of random utilities: Exploring finite mixtures of qGEV models," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 262-288.
    9. Lemp, Jason D. & Kockelman, Kara M. & Damien, Paul, 2010. "The continuous cross-nested logit model: Formulation and application for departure time choice," Transportation Research Part B: Methodological, Elsevier, vol. 44(5), pages 646-661, June.
    10. Ji, Xiangfeng & Zhou, Xuemei & Ran, Bin, 2013. "A cell-based study on pedestrian acceleration and overtaking in a transfer station corridor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(8), pages 1828-1839.
    11. Flügel, Stefan & Halse, Askill H. & Ortúzar, Juan de Dios & Rizzi, Luis I., 2015. "Methodological challenges in modelling the choice of mode for a new travel alternative using binary stated choice data – The case of high speed rail in Norway," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 438-451.
    12. Bates, John J., 2024. "Pivoting from a known base when predicting choices using logit models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    13. Marzano, Vittorio & Papola, Andrea, 2008. "On the covariance structure of the Cross-Nested Logit model," Transportation Research Part B: Methodological, Elsevier, vol. 42(2), pages 83-98, February.
    14. Dirk Helbing & Pratik Mukerji, "undated". "Crowd Disasters as Systemic Failures: Analysis of the Love Parade Disaster," Working Papers ETH-RC-12-010, ETH Zurich, Chair of Systems Design.
    15. Peter Davis & Pasquale Schiraldi, 2014. "The flexible coefficient multinomial logit (FC-MNL) model of demand for differentiated products," RAND Journal of Economics, RAND Corporation, vol. 45(1), pages 32-63, March.
    16. Pereira, Pedro & Ribeiro, Tiago & Vareda, João, 2013. "Delineating markets for bundles with consumer level data: The case of triple-play," International Journal of Industrial Organization, Elsevier, vol. 31(6), pages 760-773.
    17. Sener, Ipek N. & Pendyala, Ram M. & Bhat, Chandra R., 2011. "Accommodating spatial correlation across choice alternatives in discrete choice models: an application to modeling residential location choice behavior," Journal of Transport Geography, Elsevier, vol. 19(2), pages 294-303.
    18. Laura Grigolon, 2021. "Blurred boundaries: A flexible approach for segmentation applied to the car market," Quantitative Economics, Econometric Society, vol. 12(4), pages 1273-1305, November.
    19. Newman, Jeffrey P. & Lurkin, Virginie & Garrow, Laurie A., 2018. "Computational methods for estimating multinomial, nested, and cross-nested logit models that account for semi-aggregate data," Journal of choice modelling, Elsevier, vol. 26(C), pages 28-40.
    20. Jiang, Yan-Qun & Zhou, Shu-Guang & Duan, Ya-Li & Huang, Xiao-Qian, 2023. "A viscous continuum model with smoke effect for pedestrian evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:43:y:2009:i:1:p:36-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.