IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0154018.html
   My bibliography  Save this article

The Role of Climatic and Density Dependent Factors in Shaping Mosquito Population Dynamics: The Case of Culex pipiens in Northwestern Italy

Author

Listed:
  • Giovanni Marini
  • Piero Poletti
  • Mario Giacobini
  • Andrea Pugliese
  • Stefano Merler
  • Roberto Rosà

Abstract

Culex pipiens mosquito is a species widely spread across Europe and represents a competent vector for many arboviruses such as West Nile virus (WNV), which has been recently circulating in many European countries, causing hundreds of human cases. In order to identify the main determinants of the high heterogeneity in Cx. pipiens abundance observed in Piedmont region (Northwestern Italy) among different seasons, we developed a density-dependent stochastic model that takes explicitly into account the role played by temperature, which affects both developmental and mortality rates of different life stages. The model was calibrated with a Markov chain Monte Carlo approach exploring the likelihood of recorded capture data gathered in the study area from 2000 to 2011; in this way, we disentangled the role played by different seasonal eco-climatic factors in shaping the vector abundance. Illustrative simulations have been performed to forecast likely changes if temperature or density–dependent inputs would change. Our analysis suggests that inter-seasonal differences in the mosquito dynamics are largely driven by different temporal patterns of temperature and seasonal-specific larval carrying capacities. Specifically, high temperatures during early spring hasten the onset of the breeding season and increase population abundance in that period, while, high temperatures during the summer can decrease population size by increasing adult mortality. Higher densities of adult mosquitoes are associated with higher larval carrying capacities, which are positively correlated with spring precipitations. Finally, an increase in larval carrying capacity is expected to proportionally increase adult mosquito abundance.

Suggested Citation

  • Giovanni Marini & Piero Poletti & Mario Giacobini & Andrea Pugliese & Stefano Merler & Roberto Rosà, 2016. "The Role of Climatic and Density Dependent Factors in Shaping Mosquito Population Dynamics: The Case of Culex pipiens in Northwestern Italy," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-15, April.
  • Handle: RePEc:plo:pone00:0154018
    DOI: 10.1371/journal.pone.0154018
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0154018
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0154018&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0154018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. LonÄ arić, Željka & K. Hackenberger, Branimir, 2013. "Stage and age structured Aedes vexans and Culex pipiens (Diptera: Culicidae) climate-dependent matrix population model," Theoretical Population Biology, Elsevier, vol. 83(C), pages 82-94.
    2. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    3. Cailly, Priscilla & Tran, Annelise & Balenghien, Thomas & L’Ambert, Grégory & Toty, Céline & Ezanno, Pauline, 2012. "A climate-driven abundance model to assess mosquito control strategies," Ecological Modelling, Elsevier, vol. 227(C), pages 7-17.
    4. Erickson, Richard A. & Presley, Steven M. & Allen, Linda J.S. & Long, Kevin R. & Cox, Stephen B., 2010. "A stage-structured, Aedes albopictus population model," Ecological Modelling, Elsevier, vol. 221(9), pages 1273-1282.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Walker, Melody & Robert, Michael A. & Childs, Lauren M., 2021. "The importance of density dependence in juvenile mosquito development and survival: A model-based investigation," Ecological Modelling, Elsevier, vol. 440(C).
    2. Beniamino Caputo & Mattia Manica & Federico Filipponi & Marta Blangiardo & Pietro Cobre & Luca Delucchi & Carlo Maria De Marco & Luca Iesu & Paola Morano & Valeria Petrella & Marco Salvemini & Cesare , 2020. "ZanzaMapp: A Scalable Citizen Science Tool to Monitor Perception of Mosquito Abundance and Nuisance in Italy and Beyond," IJERPH, MDPI, vol. 17(21), pages 1-19, October.
    3. Frantz, Rachel M. & Godinez, Humberto & Martinez, Kaitlyn & Cuello, William S. & Manore, Carrie, 2024. "Age structured partial differential equations model for Culex mosquito abundance," Ecological Modelling, Elsevier, vol. 494(C).
    4. Pasquali, S. & Soresina, C. & Marchesini, E., 2022. "Mortality estimate driven by population abundance field data in a stage-structured demographic model. The case of Lobesia botrana," Ecological Modelling, Elsevier, vol. 464(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Bo & Yu, Jianshe & Xi, Zhiyong & Tang, Moxun, 2018. "The annual abundance of dengue and Zika vector Aedes albopictus and its stubbornness to suppression," Ecological Modelling, Elsevier, vol. 387(C), pages 38-48.
    2. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    3. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    4. Jesse Elliott & Zemin Bai & Shu-Ching Hsieh & Shannon E Kelly & Li Chen & Becky Skidmore & Said Yousef & Carine Zheng & David J Stewart & George A Wells, 2020. "ALK inhibitors for non-small cell lung cancer: A systematic review and network meta-analysis," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.
    5. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    6. Francois Olivier & Laval Guillaume, 2011. "Deviance Information Criteria for Model Selection in Approximate Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-25, July.
    7. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    8. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    9. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    10. Alessandri, Piergiorgio & Mumtaz, Haroon, 2019. "Financial regimes and uncertainty shocks," Journal of Monetary Economics, Elsevier, vol. 101(C), pages 31-46.
    11. Padilla, Juan L. & Azevedo, Caio L.N. & Lachos, Victor H., 2018. "Multidimensional multiple group IRT models with skew normal latent trait distributions," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 250-268.
    12. Svetlana V. Tishkovskaya & Paul G. Blackwell, 2021. "Bayesian estimation of heterogeneous environments from animal movement data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
    13. David Macro & Jeroen Weesie, 2016. "Inequalities between Others Do Matter: Evidence from Multiplayer Dictator Games," Games, MDPI, vol. 7(2), pages 1-23, April.
    14. Tautenhahn, Susanne & Heilmeier, Hermann & Jung, Martin & Kahl, Anja & Kattge, Jens & Moffat, Antje & Wirth, Christian, 2012. "Beyond distance-invariant survival in inverse recruitment modeling: A case study in Siberian Pinus sylvestris forests," Ecological Modelling, Elsevier, vol. 233(C), pages 90-103.
    15. Julian P. T. Higgins & Simon G. Thompson & David J. Spiegelhalter, 2009. "A re‐evaluation of random‐effects meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 137-159, January.
    16. Simon Mak & Derek Bingham & Yi Lu, 2016. "A regional compound Poisson process for hurricane and tropical storm damage," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(5), pages 677-703, November.
    17. Xi, Yanhui & Peng, Hui & Qin, Yemei & Xie, Wenbiao & Chen, Xiaohong, 2015. "Bayesian analysis of heavy-tailed market microstructure model and its application in stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 117(C), pages 141-153.
    18. Huang, Zhaodong & Chien, Steven & Zhu, Wei & Zheng, Pengjun, 2022. "Scheduling wheel inspection for sustainable urban rail transit operation: A Bayesian approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    19. Jorge I. Figueroa-Zúñiga & Cristian L. Bayes & Víctor Leiva & Shuangzhe Liu, 2022. "Robust beta regression modeling with errors-in-variables: a Bayesian approach and numerical applications," Statistical Papers, Springer, vol. 63(3), pages 919-942, June.
    20. Leonardo Oliveira Martins & Hirohisa Kishino, 2010. "Distribution of distances between topologies and its effect on detection of phylogenetic recombination," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(1), pages 145-159, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0154018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.