IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v233y2012icp90-103.html
   My bibliography  Save this article

Beyond distance-invariant survival in inverse recruitment modeling: A case study in Siberian Pinus sylvestris forests

Author

Listed:
  • Tautenhahn, Susanne
  • Heilmeier, Hermann
  • Jung, Martin
  • Kahl, Anja
  • Kattge, Jens
  • Moffat, Antje
  • Wirth, Christian

Abstract

Recruitment represents the net effect of seed dispersal and survival (germination and establishment) processes. Both are known to be a function of distance from the seed trees. Seed densities usually decline with distance from the seed trees and the survival function can have different shapes. It may e.g. increase with distance (Janzen–Connell type effects) or decrease in the case of facilitation. In recruitment modeling the dispersal kernel is often directly fitted to the number of saplings instead of to the number of seeds, by indirectly assuming a distance-invariant survival function. This assumption may be violated in many cases as the survival function may attain different shapes. The interaction of distance-dependent seed deposition and survival becomes more complex in the case of several seed trees, since processes shaping the survival function may act on seeds from different seed trees. We develop a recruitment model disentangling (1) seed dispersal as derived by a summed seed shadow model and (2) survival as a function of distance of several nearby seed trees. Using Bayesian model inversion we parameterize our model for post fire Pinus sylvestris regeneration, which is known to suffer from strong root competition in the vicinity of seed trees. We show that accounting for distance-dependent survival substantially improves the model performance for three tested seed dispersal kernels. We show that ignoring distance-dependency of survival leads to ecologically unrealistic parameter estimates, questionable seed dispersal properties and biased sapling density predictions at the landscape level. Disentangling seed dispersal and survival processes is essential for modeling recruitment patterns in the case of distance-dependent survival. Our model helps to learn about the connection between seed and sapling patterns particularly when several seed trees are present. Our modeling approach derives separate seed dispersal kernels, survival functions, and the resulting recruitment-patterns, also when only sapling counts are available.

Suggested Citation

  • Tautenhahn, Susanne & Heilmeier, Hermann & Jung, Martin & Kahl, Anja & Kattge, Jens & Moffat, Antje & Wirth, Christian, 2012. "Beyond distance-invariant survival in inverse recruitment modeling: A case study in Siberian Pinus sylvestris forests," Ecological Modelling, Elsevier, vol. 233(C), pages 90-103.
  • Handle: RePEc:eee:ecomod:v:233:y:2012:i:c:p:90-103
    DOI: 10.1016/j.ecolmodel.2012.03.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380012001160
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2012.03.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ben D. MacArthur & Richard O. C. Oreffo, 2005. "Bridging the gap," Nature, Nature, vol. 433(7021), pages 19-19, January.
    2. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    3. Owen T. Lewis, 2010. "Close relatives are bad news," Nature, Nature, vol. 466(7307), pages 698-699, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vanessa Taylor & Sarah Ashelford & Patricia Fell & Penelope J Goacher, 2015. "Biosciences in nurse education: is the curriculum fit for practice? Lecturers' views and recommendations from across the UK," Journal of Clinical Nursing, John Wiley & Sons, vol. 24(19-20), pages 2797-2806, October.
    2. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    3. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    4. Jesse Elliott & Zemin Bai & Shu-Ching Hsieh & Shannon E Kelly & Li Chen & Becky Skidmore & Said Yousef & Carine Zheng & David J Stewart & George A Wells, 2020. "ALK inhibitors for non-small cell lung cancer: A systematic review and network meta-analysis," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.
    5. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    6. Booth, Heather, 2006. "Demographic forecasting: 1980 to 2005 in review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 547-581.
    7. Ercan Tomakin, 2014. "Teaching English Tenses (grammar) in the Turkish Texts; A Case of Simple Present Tense: Is?l Maketi Iter," International Journal of Learning and Development, Macrothink Institute, vol. 4(1), pages 115-131, March.
    8. Francois Olivier & Laval Guillaume, 2011. "Deviance Information Criteria for Model Selection in Approximate Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-25, July.
    9. Peter Viggo Jakobsen, 2009. "Small States, Big Influence: The Overlooked Nordic Influence on the Civilian ESDP," Journal of Common Market Studies, Wiley Blackwell, vol. 47(1), pages 81-102, January.
    10. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    11. Radha Jagannathan & Michael J. Camasso & Bagavan Das & Jale Tosun & Sadagopan Iyengar, 2017. "Family, society and the individual: determinants of entrepreneurial attitudes among youth in Chennai, South India," Journal of Global Entrepreneurship Research, Springer;UNESCO Chair in Entrepreneurship, vol. 7(1), pages 1-22, December.
    12. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    13. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    14. Alessandri, Piergiorgio & Mumtaz, Haroon, 2019. "Financial regimes and uncertainty shocks," Journal of Monetary Economics, Elsevier, vol. 101(C), pages 31-46.
    15. Padilla, Juan L. & Azevedo, Caio L.N. & Lachos, Victor H., 2018. "Multidimensional multiple group IRT models with skew normal latent trait distributions," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 250-268.
    16. Svetlana V. Tishkovskaya & Paul G. Blackwell, 2021. "Bayesian estimation of heterogeneous environments from animal movement data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
    17. David Macro & Jeroen Weesie, 2016. "Inequalities between Others Do Matter: Evidence from Multiplayer Dictator Games," Games, MDPI, vol. 7(2), pages 1-23, April.
    18. Julian P. T. Higgins & Simon G. Thompson & David J. Spiegelhalter, 2009. "A re‐evaluation of random‐effects meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 137-159, January.
    19. Simon Mak & Derek Bingham & Yi Lu, 2016. "A regional compound Poisson process for hurricane and tropical storm damage," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(5), pages 677-703, November.
    20. Xi, Yanhui & Peng, Hui & Qin, Yemei & Xie, Wenbiao & Chen, Xiaohong, 2015. "Bayesian analysis of heavy-tailed market microstructure model and its application in stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 117(C), pages 141-153.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:233:y:2012:i:c:p:90-103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.