IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0145081.html
   My bibliography  Save this article

Tools for Single-Cell Kinetic Analysis of Virus-Host Interactions

Author

Listed:
  • Jay W Warrick
  • Andrea Timm
  • Adam Swick
  • John Yin

Abstract

Measures of cellular gene expression or behavior, when performed on individual cells, inevitably reveal a diversity of behaviors and outcomes that can correlate with normal or diseased states. For virus infections, the potential diversity of outcomes are pushed to an extreme, where measures of infection reflect features of the specific infecting virus particle, the individual host cell, as well as interactions between viral and cellular components. Single-cell measures, while revealing, still often rely on specialized fluid handling capabilities, employ end-point measures, and remain labor-intensive to perform. To address these limitations, we consider a new microwell-based device that uses simple pipette-based fluid handling to isolate individual cells. Our design allows different experimental conditions to be implemented in a single device, permitting easier and more standardized protocols. Further, we utilize a recently reported dual-color fluorescent reporter system that provides dynamic readouts of viral and cellular gene expression during single-cell infections by vesicular stomatitis virus. In addition, we develop and show how free, open-source software can enable streamlined data management and batch image analysis. Here we validate the integration of the device and software using the reporter system to demonstrate unique single-cell dynamic measures of cellular responses to viral infection.

Suggested Citation

  • Jay W Warrick & Andrea Timm & Adam Swick & John Yin, 2016. "Tools for Single-Cell Kinetic Analysis of Virus-Host Interactions," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-19, January.
  • Handle: RePEc:plo:pone00:0145081
    DOI: 10.1371/journal.pone.0145081
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0145081
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0145081&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0145081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alex K. Shalek & Rahul Satija & Joe Shuga & John J. Trombetta & Dave Gennert & Diana Lu & Peilin Chen & Rona S. Gertner & Jellert T. Gaublomme & Nir Yosef & Schraga Schwartz & Brian Fowler & Suzanne W, 2014. "Single-cell RNA-seq reveals dynamic paracrine control of cellular variation," Nature, Nature, vol. 510(7505), pages 363-369, June.
    2. Corbin E. Meacham & Sean J. Morrison, 2013. "Tumour heterogeneity and cancer cell plasticity," Nature, Nature, vol. 501(7467), pages 328-337, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sylvie Rato & Antonio Rausell & Miguel Muñoz & Amalio Telenti & Angela Ciuffi, 2017. "Single-cell analysis identifies cellular markers of the HIV permissive cell," PLOS Pathogens, Public Library of Science, vol. 13(10), pages 1-23, October.
    2. Remy Elbez & Jeff Folz & Alan McLean & Hernan Roca & Joseph M Labuz & Kenneth J Pienta & Shuichi Takayama & Raoul Kopelman, 2021. "Cell-morphodynamic phenotype classification with application to cancer metastasis using cell magnetorotation and machine-learning," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-14, November.
    3. Humberto Contreras-Trujillo & Jiya Eerdeng & Samir Akre & Du Jiang & Jorge Contreras & Basia Gala & Mary C. Vergel-Rodriguez & Yeachan Lee & Aparna Jorapur & Areen Andreasian & Lisa Harton & Charles S, 2021. "Deciphering intratumoral heterogeneity using integrated clonal tracking and single-cell transcriptome analyses," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    4. Seong Eun Lee & Seongyeol Park & Shinae Yi & Na Rae Choi & Mi Ae Lim & Jae Won Chang & Ho-Ryun Won & Je Ryong Kim & Hye Mi Ko & Eun-Jae Chung & Young Joo Park & Sun Wook Cho & Hyeong Won Yu & June You, 2024. "Unraveling the role of the mitochondrial one-carbon pathway in undifferentiated thyroid cancer by multi-omics analyses," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Bowen Li & Jianwu Tian & Fu Zhang & Chongzhi Wu & Zhiyao Li & Dandan Wang & Jiahao Zhuang & Siqin Chen & Wentao Song & Yufu Tang & Yuan Ping & Bin Liu, 2024. "Self-assembled aldehyde dehydrogenase-activatable nano-prodrug for cancer stem cell-enriched tumor detection and treatment," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Jingtao Wang & Gregory J. Fonseca & Jun Ding, 2024. "scSemiProfiler: Advancing large-scale single-cell studies through semi-profiling with deep generative models and active learning," Nature Communications, Nature, vol. 15(1), pages 1-27, December.
    7. Haralampos Hatzikirou & Nikos I. Kavallaris & Marta Leocata, 2021. "A Novel Averaging Principle Provides Insights in the Impact of Intratumoral Heterogeneity on Tumor Progression," Mathematics, MDPI, vol. 9(20), pages 1-27, October.
    8. Albert H Gough & Ning Chen & Tong Ying Shun & Timothy R Lezon & Robert C Boltz & Celeste E Reese & Jacob Wagner & Lawrence A Vernetti & Jennifer R Grandis & Adrian V Lee & Andrew M Stern & Mark E Schu, 2014. "Identifying and Quantifying Heterogeneity in High Content Analysis: Application of Heterogeneity Indices to Drug Discovery," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-16, July.
    9. Yanying Wang & Jing Wang & Xiaoyu Li & Xushen Xiong & Jianyi Wang & Ziheng Zhou & Xiaoxiao Zhu & Yang Gu & Dan Dominissini & Lei He & Yong Tian & Chengqi Yi & Zusen Fan, 2021. "N1-methyladenosine methylation in tRNA drives liver tumourigenesis by regulating cholesterol metabolism," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    10. Miranda V. Hunter & Reuben Moncada & Joshua M. Weiss & Itai Yanai & Richard M. White, 2021. "Spatially resolved transcriptomics reveals the architecture of the tumor-microenvironment interface," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    11. Yael Korem & Pablo Szekely & Yuval Hart & Hila Sheftel & Jean Hausser & Avi Mayo & Michael E Rothenberg & Tomer Kalisky & Uri Alon, 2015. "Geometry of the Gene Expression Space of Individual Cells," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-27, July.
    12. Frederik Rastfeld & Marco Hoffmann & Sylvie Krüger & Patrick Bohn & Anne-Sophie Gribling-Burrer & Laura Wagner & Nils Hersch & Carina Stegmayr & Lukas Lövenich & Sven Gerlach & Daniel Köninger & Chris, 2025. "Selectively expressed RNA molecules as a versatile tool for functionalized cell targeting," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    13. Josefine Radke & Elisa Schumann & Julia Onken & Randi Koll & Güliz Acker & Bohdan Bodnar & Carolin Senger & Sascha Tierling & Markus Möbs & Peter Vajkoczy & Anna Vidal & Sandra Högler & Petra Kodajova, 2022. "Decoding molecular programs in melanoma brain metastases," Nature Communications, Nature, vol. 13(1), pages 1-24, December.
    14. Claudia Bühnemann & Simon Li & Haiyue Yu & Harriet Branford White & Karl L Schäfer & Antonio Llombart-Bosch & Isidro Machado & Piero Picci & Pancras C W Hogendoorn & Nicholas A Athanasou & J Alison No, 2014. "Quantification of the Heterogeneity of Prognostic Cellular Biomarkers in Ewing Sarcoma Using Automated Image and Random Survival Forest Analysis," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-14, September.
    15. Md Tauhidul Islam & Jen-Yeu Wang & Hongyi Ren & Xiaomeng Li & Masoud Badiei Khuzani & Shengtian Sang & Lequan Yu & Liyue Shen & Wei Zhao & Lei Xing, 2022. "Leveraging data-driven self-consistency for high-fidelity gene expression recovery," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    16. Margriet M Palm & Marjet Elemans & Joost B Beltman, 2018. "Heritable tumor cell division rate heterogeneity induces clonal dominance," PLOS Computational Biology, Public Library of Science, vol. 14(2), pages 1-19, February.
    17. Katrin Böttger & Haralambos Hatzikirou & Anja Voss-Böhme & Elisabetta Ada Cavalcanti-Adam & Miguel A Herrero & Andreas Deutsch, 2015. "An Emerging Allee Effect Is Critical for Tumor Initiation and Persistence," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-14, September.
    18. Jacob C Kimmel & Amy Y Chang & Andrew S Brack & Wallace F Marshall, 2018. "Inferring cell state by quantitative motility analysis reveals a dynamic state system and broken detailed balance," PLOS Computational Biology, Public Library of Science, vol. 14(1), pages 1-29, January.
    19. Shaojie Qin & Yi Zhang & Mingying Shi & Daiyu Miao & Jiansen Lu & Lu Wen & Yu Bai, 2024. "In-depth organic mass cytometry reveals differential contents of 3-hydroxybutanoic acid at the single-cell level," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Jing Gao & Xingyu Jiang & Shumin Lei & Wenhao Cheng & Yi Lai & Min Li & Lei Yang & Peifeng Liu & Xiao-hua Chen & Min Huang & Haijun Yu & Huixiong Xu & Zhiai Xu, 2024. "A region-confined PROTAC nanoplatform for spatiotemporally tunable protein degradation and enhanced cancer therapy," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0145081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.