IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50735-w.html
   My bibliography  Save this article

A region-confined PROTAC nanoplatform for spatiotemporally tunable protein degradation and enhanced cancer therapy

Author

Listed:
  • Jing Gao

    (Chinese Academy of Sciences
    Fudan University
    Tongji University)

  • Xingyu Jiang

    (East China Normal University)

  • Shumin Lei

    (Nanjing University of Chinese Medicine)

  • Wenhao Cheng

    (Chinese Academy of Sciences)

  • Yi Lai

    (Chinese Academy of Sciences)

  • Min Li

    (Chinese Academy of Sciences)

  • Lei Yang

    (Chinese Academy of Sciences)

  • Peifeng Liu

    (Shanghai Jiao Tong University)

  • Xiao-hua Chen

    (Chinese Academy of Sciences)

  • Min Huang

    (Chinese Academy of Sciences)

  • Haijun Yu

    (Chinese Academy of Sciences
    Nanjing University of Chinese Medicine)

  • Huixiong Xu

    (Fudan University)

  • Zhiai Xu

    (East China Normal University)

Abstract

The antitumor performance of PROteolysis-TArgeting Chimeras (PROTACs) is limited by its insufficient tumor specificity and poor pharmacokinetics. These disadvantages are further compounded by tumor heterogeneity, especially the presence of cancer stem-like cells, which drive tumor growth and relapse. Herein, we design a region-confined PROTAC nanoplatform that integrates both reactive oxygen species (ROS)-activatable and hypoxia-responsive PROTAC prodrugs for the precise manipulation of bromodomain and extraterminal protein 4 expression and tumor eradication. These PROTAC nanoparticles selectively accumulate within and penetrate deep into tumors via response to matrix metalloproteinase-2. Photoactivity is then reactivated in response to the acidic intracellular milieu and the PROTAC is discharged due to the ROS generated via photodynamic therapy specifically within the normoxic microenvironment. Moreover, the latent hypoxia-responsive PROTAC prodrug is restored in hypoxic cancer stem-like cells overexpressing nitroreductase. Here, we show the ability of region-confined PROTAC nanoplatform to effectively degrade BRD4 in both normoxic and hypoxic environments, markedly hindering tumor progression in breast and head-neck tumor models.

Suggested Citation

  • Jing Gao & Xingyu Jiang & Shumin Lei & Wenhao Cheng & Yi Lai & Min Li & Lei Yang & Peifeng Liu & Xiao-hua Chen & Min Huang & Haijun Yu & Huixiong Xu & Zhiai Xu, 2024. "A region-confined PROTAC nanoplatform for spatiotemporally tunable protein degradation and enhanced cancer therapy," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50735-w
    DOI: 10.1038/s41467-024-50735-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50735-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50735-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tannishtha Reya & Sean J. Morrison & Michael F. Clarke & Irving L. Weissman, 2001. "Stem cells, cancer, and cancer stem cells," Nature, Nature, vol. 414(6859), pages 105-111, November.
    2. Jing Gao & Bo Hou & Qiwen Zhu & Lei Yang & Xingyu Jiang & Zhifeng Zou & Xutong Li & Tianfeng Xu & Mingyue Zheng & Yi-Hung Chen & Zhiai Xu & Huixiong Xu & Haijun Yu, 2022. "Author Correction: Engineered bioorthogonal POLY-PROTAC nanoparticles for tumour-specific protein degradation and precise cancer therapy," Nature Communications, Nature, vol. 13(1), pages 1-1, December.
    3. Corbin E. Meacham & Sean J. Morrison, 2013. "Tumour heterogeneity and cancer cell plasticity," Nature, Nature, vol. 501(7467), pages 328-337, September.
    4. Jing Gao & Bo Hou & Qiwen Zhu & Lei Yang & Xingyu Jiang & Zhifeng Zou & Xutong Li & Tianfeng Xu & Mingyue Zheng & Yi-Hung Chen & Zhiai Xu & Huixiong Xu & Haijun Yu, 2022. "Engineered bioorthogonal POLY-PROTAC nanoparticles for tumour-specific protein degradation and precise cancer therapy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Jiaqiang Dong & Jiong Li & Yang Li & Zhikun Ma & Yongxin Yu & Cun-Yu Wang, 2021. "Transcriptional super-enhancers control cancer stemness and metastasis genes in squamous cell carcinoma," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeinab Tavasoli & Parviz Abdolmaleki & Seyed Javad Mowla & Faezeh Ghanati & Amir Sabet Sarvestani, 2009. "Investigation of the effects of static magnetic field on apoptosis in bone marrow stem cells of rat," Environment Systems and Decisions, Springer, vol. 29(2), pages 220-224, June.
    2. Remy Elbez & Jeff Folz & Alan McLean & Hernan Roca & Joseph M Labuz & Kenneth J Pienta & Shuichi Takayama & Raoul Kopelman, 2021. "Cell-morphodynamic phenotype classification with application to cancer metastasis using cell magnetorotation and machine-learning," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-14, November.
    3. Humberto Contreras-Trujillo & Jiya Eerdeng & Samir Akre & Du Jiang & Jorge Contreras & Basia Gala & Mary C. Vergel-Rodriguez & Yeachan Lee & Aparna Jorapur & Areen Andreasian & Lisa Harton & Charles S, 2021. "Deciphering intratumoral heterogeneity using integrated clonal tracking and single-cell transcriptome analyses," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    4. Siegmund Kimberly D. & Marjoram Paul & Shibata Darryl, 2008. "Modeling DNA Methylation in a Population of Cancer Cells," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-23, June.
    5. Seong Eun Lee & Seongyeol Park & Shinae Yi & Na Rae Choi & Mi Ae Lim & Jae Won Chang & Ho-Ryun Won & Je Ryong Kim & Hye Mi Ko & Eun-Jae Chung & Young Joo Park & Sun Wook Cho & Hyeong Won Yu & June You, 2024. "Unraveling the role of the mitochondrial one-carbon pathway in undifferentiated thyroid cancer by multi-omics analyses," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Meacci, Luca & Primicerio, Mario & Buscaglia, Gustavo Carlos, 2021. "Growth of tumours with stem cells: The effect of crowding and ageing of cells," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    7. Haralampos Hatzikirou & Nikos I. Kavallaris & Marta Leocata, 2021. "A Novel Averaging Principle Provides Insights in the Impact of Intratumoral Heterogeneity on Tumor Progression," Mathematics, MDPI, vol. 9(20), pages 1-27, October.
    8. Shuyan Liu & Chengfei Liu & Xiaoyun Min & Yuanyuan Ji & Na Wang & Dan Liu & Jiangyi Cai & Ke Li, 2013. "Prognostic Value of Cancer Stem Cell Marker Aldehyde Dehydrogenase in Ovarian Cancer: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-1, November.
    9. Nikolay Bessonov & Guillaume Pinna & Andrey Minarsky & Annick Harel-Bellan & Nadya Morozova, 2019. "Mathematical modeling reveals the factors involved in the phenomena of cancer stem cells stabilization," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-24, November.
    10. Albert H Gough & Ning Chen & Tong Ying Shun & Timothy R Lezon & Robert C Boltz & Celeste E Reese & Jacob Wagner & Lawrence A Vernetti & Jennifer R Grandis & Adrian V Lee & Andrew M Stern & Mark E Schu, 2014. "Identifying and Quantifying Heterogeneity in High Content Analysis: Application of Heterogeneity Indices to Drug Discovery," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-16, July.
    11. Yanying Wang & Jing Wang & Xiaoyu Li & Xushen Xiong & Jianyi Wang & Ziheng Zhou & Xiaoxiao Zhu & Yang Gu & Dan Dominissini & Lei He & Yong Tian & Chengqi Yi & Zusen Fan, 2021. "N1-methyladenosine methylation in tRNA drives liver tumourigenesis by regulating cholesterol metabolism," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    12. Miranda V. Hunter & Reuben Moncada & Joshua M. Weiss & Itai Yanai & Richard M. White, 2021. "Spatially resolved transcriptomics reveals the architecture of the tumor-microenvironment interface," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    13. Christopher R S Banerji & Simone Severini & Carlos Caldas & Andrew E Teschendorff, 2015. "Intra-Tumour Signalling Entropy Determines Clinical Outcome in Breast and Lung Cancer," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-23, March.
    14. Qing Chen & Xin Zhang & Wei-Min Li & Yu-Qiang Ji & Hao-Zhe Cao & Pengsheng Zheng, 2014. "Prognostic Value of LGR5 in Colorectal Cancer: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-9, September.
    15. Josefine Radke & Elisa Schumann & Julia Onken & Randi Koll & Güliz Acker & Bohdan Bodnar & Carolin Senger & Sascha Tierling & Markus Möbs & Peter Vajkoczy & Anna Vidal & Sandra Högler & Petra Kodajova, 2022. "Decoding molecular programs in melanoma brain metastases," Nature Communications, Nature, vol. 13(1), pages 1-24, December.
    16. Peter Kovacic & Ratnasamy Somanathan, 2017. "Unifying Mechanism for Nutrients as Anticancer Agents: Electron Transfer, Reactive Oxygen Species and Oxidative Stress," Global Journal of Health Science, Canadian Center of Science and Education, vol. 9(8), pages 1-66, August.
    17. Claudia Bühnemann & Simon Li & Haiyue Yu & Harriet Branford White & Karl L Schäfer & Antonio Llombart-Bosch & Isidro Machado & Piero Picci & Pancras C W Hogendoorn & Nicholas A Athanasou & J Alison No, 2014. "Quantification of the Heterogeneity of Prognostic Cellular Biomarkers in Ewing Sarcoma Using Automated Image and Random Survival Forest Analysis," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-14, September.
    18. Isabelle Bartram & Jonathan M Jeschke, 2019. "Do cancer stem cells exist? A pilot study combining a systematic review with the hierarchy-of-hypotheses approach," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-12, December.
    19. Tang Peng & Ma Qinghua & Tang Zhenning & Wang Kaifa & Jiang Jun, 2011. "Long-Term Sphere Culture Cannot Maintain a High Ratio of Cancer Stem Cells: A Mathematical Model and Experiment," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-6, November.
    20. N. Timurkaan & H. Eroksuz & A. Cevik & B. Karabulut, 2016. "Cutaneous leiomyosarcoma with osteoid metaplasia in a budgerigar (Melopsittacus undulatus): a case report," Veterinární medicína, Czech Academy of Agricultural Sciences, vol. 61(9), pages 533-537.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50735-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.