IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48865-2.html
   My bibliography  Save this article

In-depth organic mass cytometry reveals differential contents of 3-hydroxybutanoic acid at the single-cell level

Author

Listed:
  • Shaojie Qin

    (Peking University)

  • Yi Zhang

    (Peking University)

  • Mingying Shi

    (Peking University)

  • Daiyu Miao

    (Peking University)

  • Jiansen Lu

    (Peking University)

  • Lu Wen

    (Peking University)

  • Yu Bai

    (Peking University)

Abstract

Comprehensive single-cell metabolic profiling is critical for revealing phenotypic heterogeneity and elucidating the molecular mechanisms underlying biological processes. However, single-cell metabolomics remains challenging because of the limited metabolite coverage and inability to discriminate isomers. Herein, we establish a single-cell metabolomics platform for in-depth organic mass cytometry. Extended single-cell analysis time guarantees sufficient MS/MS acquisition for metabolite identification and the isomers discrimination while online sampling ensures the high-throughput of the method. The largest number of identified metabolites (approximately 600) are achieved in single cells and fine subtyping of MCF-7 cells is first demonstrated by an investigation on the differential levels of 3-hydroxybutanoic acid among clusters. Single-cell transcriptome analysis reveals differences in the expression of 3-hydroxybutanoic acid downstream antioxidative stress genes, such as metallothionein 2 (MT2A), while a fluorescence-activated cell sorting assay confirms the positive relationship between 3-hydroxybutanoic acid and target proteins; these results suggest that the heterogeneity of 3-hydroxybutanoic acid provides cancer cells with different ability to resist surrounding oxidative stress. Our method paves the way for deep single-cell metabolome profiling and investigations on the physiological and pathological processes that occur during cancer.

Suggested Citation

  • Shaojie Qin & Yi Zhang & Mingying Shi & Daiyu Miao & Jiansen Lu & Lu Wen & Yu Bai, 2024. "In-depth organic mass cytometry reveals differential contents of 3-hydroxybutanoic acid at the single-cell level," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48865-2
    DOI: 10.1038/s41467-024-48865-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48865-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48865-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chun-Kai Huang & Po-Hao Chang & Wen-Hung Kuo & Chi-Long Chen & Yung-Ming Jeng & King-Jen Chang & Jin-Yuh Shew & Chun-Mei Hu & Wen-Hwa Lee, 2017. "Adipocytes promote malignant growth of breast tumours with monocarboxylate transporter 2 expression via β-hydroxybutyrate," Nature Communications, Nature, vol. 8(1), pages 1-13, April.
    2. Jeffrey M. Perkel, 2021. "Single-cell analysis enters the multiomics age," Nature, Nature, vol. 595(7868), pages 614-616, July.
    3. Charrad, Malika & Ghazzali, Nadia & Boiteau, Véronique & Niknafs, Azam, 2014. "NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 61(i06).
    4. Alex K. Shalek & Rahul Satija & Joe Shuga & John J. Trombetta & Dave Gennert & Diana Lu & Peilin Chen & Rona S. Gertner & Jellert T. Gaublomme & Nir Yosef & Schraga Schwartz & Brian Fowler & Suzanne W, 2014. "Single-cell RNA-seq reveals dynamic paracrine control of cellular variation," Nature, Nature, vol. 510(7505), pages 363-369, June.
    5. Zhengtao Xiao & Ziwei Dai & Jason W. Locasale, 2019. "Metabolic landscape of the tumor microenvironment at single cell resolution," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    6. G. Gambardella & G. Viscido & B. Tumaini & A. Isacchi & R. Bosotti & D. di Bernardo, 2022. "A single-cell analysis of breast cancer cell lines to study tumour heterogeneity and drug response," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Marissa Fessenden, 2016. "Metabolomics: Small molecules, single cells," Nature, Nature, vol. 540(7631), pages 153-155, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bolívar, Fernando & Duran, Miguel A. & Lozano-Vivas, Ana, 2023. "Bank business models, size, and profitability," Finance Research Letters, Elsevier, vol. 53(C).
    2. Sylvie Rato & Antonio Rausell & Miguel Muñoz & Amalio Telenti & Angela Ciuffi, 2017. "Single-cell analysis identifies cellular markers of the HIV permissive cell," PLOS Pathogens, Public Library of Science, vol. 13(10), pages 1-23, October.
    3. Reder, Maik & Yürüşen, Nurseda Y. & Melero, Julio J., 2018. "Data-driven learning framework for associating weather conditions and wind turbine failures," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 554-569.
    4. Marcin Gąsior, 2021. "Environmental Attitudes and Willingness to Purchase Online—Classification Approach," Sustainability, MDPI, vol. 13(15), pages 1-17, August.
    5. Roopam Shukla & Ankit Agarwal & Kamna Sachdeva & Juergen Kurths & P. K. Joshi, 2019. "Climate change perception: an analysis of climate change and risk perceptions among farmer types of Indian Western Himalayas," Climatic Change, Springer, vol. 152(1), pages 103-119, January.
    6. Bárbara Andrade Barbosa & Saskia D. Asten & Ji Won Oh & Arantza Farina-Sarasqueta & Joanne Verheij & Frederike Dijk & Hanneke W. M. Laarhoven & Bauke Ylstra & Juan J. Garcia Vallejo & Mark A. Wiel & Y, 2021. "Bayesian log-normal deconvolution for enhanced in silico microdissection of bulk gene expression data," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    7. Saemi Shin & Won Suck Yoon & Sang-Hoon Byeon, 2022. "Trends in Occupational Infectious Diseases in South Korea and Classification of Industries According to the Risk of Biological Hazards Using K-Means Clustering," IJERPH, MDPI, vol. 19(19), pages 1-19, September.
    8. Song He & Xinyu Song & Xiaoxi Yang & Jijun Yu & Yuqi Wen & Lianlian Wu & Bowei Yan & Jiannan Feng & Xiaochen Bo, 2021. "COMSUC: A web server for the identification of consensus molecular subtypes of cancer based on multiple methods and multi-omics data," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-10, March.
    9. Jihane El Ouadi & Hanae Errousso & Nicolas Malhene & Siham Benhadou & Hicham Medromi, 2022. "A machine-learning based hybrid algorithm for strategic location of urban bundling hubs to support shared public transport," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(5), pages 3215-3258, October.
    10. Cyril Atkinson-Clement & Eléonore Pigalle, 2021. "What can we learn from Covid-19 pandemic’s impact on human behaviour? The case of France’s lockdown," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-12, December.
    11. Michael J. Geuenich & Dae-won Gong & Kieran R. Campbell, 2024. "The impacts of active and self-supervised learning on efficient annotation of single-cell expression data," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Kreitmair, Ursula & Bower-Bir, Jacob, 2021. "Too different to solve climate change? Experimental evidence on the effects of production and benefit heterogeneity on collective action," Ecological Economics, Elsevier, vol. 184(C).
    13. Getaneh Addis Tessema & Jan van der Borg & Anton Van Rompaey & Steven Van Passel & Enyew Adgo & Amare Sewnet Minale & Kerebih Asrese & Amaury Frankl & Jean Poesen, 2022. "Benefit Segmentation of Tourists to Geosites and Its Implications for Sustainable Development of Geotourism in the Southern Lake Tana Region, Ethiopia," Sustainability, MDPI, vol. 14(6), pages 1-25, March.
    14. Wu, Tong & Rocha, Juan C. & Berry, Kevin & Chaigneau, Tomas & Hamann, Maike & Lindkvist, Emilie & Qiu, Jiangxiao & Schill, Caroline & Shepon, Alon & Crépin, Anne-Sophie & Folke, Carl, 2024. "Triple Bottom Line or Trilemma? Global Tradeoffs Between Prosperity, Inequality, and the Environment," World Development, Elsevier, vol. 178(C).
    15. Jingtao Wang & Gregory J. Fonseca & Jun Ding, 2024. "scSemiProfiler: Advancing large-scale single-cell studies through semi-profiling with deep generative models and active learning," Nature Communications, Nature, vol. 15(1), pages 1-27, December.
    16. Petricli, Gulcan & Inkaya, Tulin & Gokay Emel, Gul, 2024. "Identifying green citizen typologies by mining household-level survey data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    17. Ee Shan Liau & Suoqin Jin & Yen-Chung Chen & Wei-Szu Liu & Maëliss Calon & Stéphane Nedelec & Qing Nie & Jun-An Chen, 2023. "Single-cell transcriptomic analysis reveals diversity within mammalian spinal motor neurons," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    18. Young Hyun Kim & Kug Jin Jeon & Chena Lee & Yoon Joo Choi & Hoi-In Jung & Sang-Sun Han, 2021. "Analysis of the mandibular canal course using unsupervised machine learning algorithm," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-13, November.
    19. Turati, Pietro & Pedroni, Nicola & Zio, Enrico, 2017. "Simulation-based exploration of high-dimensional system models for identifying unexpected events," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 317-330.
    20. Ben Beck & Meghan Winters & Trisalyn Nelson & Chris Pettit & Simone Z Leao & Meead Saberi & Jason Thompson & Sachith Seneviratne & Kerry Nice & Mark Stevenson, 2023. "Developing urban biking typologies: Quantifying the complex interactions of bicycle ridership, bicycle network and built environment characteristics," Environment and Planning B, , vol. 50(1), pages 7-23, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48865-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.