IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0143799.html
   My bibliography  Save this article

Local Optimization Strategies in Urban Vehicular Mobility

Author

Listed:
  • Pierpaolo Mastroianni
  • Bernardo Monechi
  • Carlo Liberto
  • Gaetano Valenti
  • Vito D P Servedio
  • Vittorio Loreto

Abstract

The comprehension of vehicular traffic in urban environments is crucial to achieve a good management of the complex processes arising from people collective motion. Even allowing for the great complexity of human beings, human behavior turns out to be subject to strong constraints—physical, environmental, social, economic—that induce the emergence of common patterns. The observation and understanding of those patterns is key to setup effective strategies to optimize the quality of life in cities while not frustrating the natural need for mobility. In this paper we focus on vehicular mobility with the aim to reveal the underlying patterns and uncover the human strategies determining them. To this end we analyze a large dataset of GPS vehicles tracks collected in the Rome (Italy) district during a month. We demonstrate the existence of a local optimization of travel times that vehicle drivers perform while choosing their journey. This finding is mirrored by two additional important facts, i.e., the observation that the average vehicle velocity increases by increasing the travel length and the emergence of a universal scaling law for the distribution of travel times at fixed traveled length. A simple modeling scheme confirms this scenario opening the way to further predictions.

Suggested Citation

  • Pierpaolo Mastroianni & Bernardo Monechi & Carlo Liberto & Gaetano Valenti & Vito D P Servedio & Vittorio Loreto, 2015. "Local Optimization Strategies in Urban Vehicular Mobility," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-13, December.
  • Handle: RePEc:plo:pone00:0143799
    DOI: 10.1371/journal.pone.0143799
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0143799
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0143799&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0143799?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vittoria Colizza & Alain Barrat & Marc Barthelemy & Alain-Jacques Valleron & Alessandro Vespignani, 2007. "Modeling the Worldwide Spread of Pandemic Influenza: Baseline Case and Containment Interventions," PLOS Medicine, Public Library of Science, vol. 4(1), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sowa, Konrad & Przegalinska, Aleksandra & Ciechanowski, Leon, 2021. "Cobots in knowledge work," Journal of Business Research, Elsevier, vol. 125(C), pages 135-142.
    2. Adegbite, Olayinka O. & Machethe, Charles L., 2020. "Bridging the financial inclusion gender gap in smallholder agriculture in Nigeria: An untapped potential for sustainable development," World Development, Elsevier, vol. 127(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. M. Mniszewski & S. Y. Del Valle & P. D. Stroud & J. M. Riese & S. J. Sydoriak, 2008. "Pandemic simulation of antivirals + school closures: buying time until strain-specific vaccine is available," Computational and Mathematical Organization Theory, Springer, vol. 14(3), pages 209-221, September.
    2. Floriana Gargiulo & Sônia Ternes & Sylvie Huet & Guillaume Deffuant, 2010. "An Iterative Approach for Generating Statistically Realistic Populations of Households," PLOS ONE, Public Library of Science, vol. 5(1), pages 1-9, January.
    3. Teruhiko Yoneyama & Sanmay Das & Mukkai Krishnamoorthy, 2012. "A Hybrid Model for Disease Spread and an Application to the SARS Pandemic," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 15(1), pages 1-5.
    4. Joseph H. Cook, 2013. "Principles and standards for benefit–cost analysis of public health preparedness and pandemic mitigation programs," Chapters, in: Scott O. Farrow & Richard Zerbe, Jr. (ed.), Principles and Standards for Benefit–Cost Analysis, chapter 3, pages 110-152, Edward Elgar Publishing.
    5. Xiaoyan Mu & Anthony Gar-On Yeh & Xiaohu Zhang, 2021. "The interplay of spatial spread of COVID-19 and human mobility in the urban system of China during the Chinese New Year," Environment and Planning B, , vol. 48(7), pages 1955-1971, September.
    6. Panayotis Christidis & Aris Christodoulou, 2020. "The Predictive Capacity of Air Travel Patterns during the Global Spread of the COVID-19 Pandemic: Risk, Uncertainty and Randomness," IJERPH, MDPI, vol. 17(10), pages 1-15, May.
    7. Mohammadi, Neda & Taylor, John E., 2017. "Urban energy flux: Spatiotemporal fluctuations of building energy consumption and human mobility-driven prediction," Applied Energy, Elsevier, vol. 195(C), pages 810-818.
    8. Nolan E. Phillips & Brian L. Levy & Robert J. Sampson & Mario L. Small & Ryan Q. Wang, 2021. "The Social Integration of American Cities: Network Measures of Connectedness Based on Everyday Mobility Across Neighborhoods," Sociological Methods & Research, , vol. 50(3), pages 1110-1149, August.
    9. Margaret L. Brandeau & Jessica H. McCoy & Nathaniel Hupert & Jon-Erik Holty & Dena M. Bravata, 2009. "Recommendations for Modeling Disaster Responses in Public Health and Medicine: A Position Paper of the Society for Medical Decision Making," Medical Decision Making, , vol. 29(4), pages 438-460, July.
    10. C. M. Schneider & T. Mihaljev & S. Havlin & H. J. Herrmann, "undated". "Suppressing Epidemics with a Limited Amount of Immunization Units," Working Papers ETH-RC-12-007, ETH Zurich, Chair of Systems Design.
    11. Spiro Maroulis, 2016. "Interpreting School Choice Treatment Effects: Results and Implications from Computational Experiments," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 19(1), pages 1-7.
    12. Amit Summan & Arindam Nandi, 2022. "Timing of non-pharmaceutical interventions to mitigate COVID-19 transmission and their effects on mobility: a cross-country analysis," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 23(1), pages 105-117, February.
    13. Qiushi Chen & Michiko Tsubaki & Yasuhiro Minami & Kazutoshi Fujibayashi & Tetsuro Yumoto & Junzo Kamei & Yuka Yamada & Hidenori Kominato & Hideki Oono & Toshio Naito, 2021. "Using Mobile Phone Data to Estimate the Relationship between Population Flow and Influenza Infection Pathways," IJERPH, MDPI, vol. 18(14), pages 1-32, July.
    14. van der Weijden, Charlie P. & Stein, Mart L. & Jacobi, André J. & Kretzschmar, Mirjam E.E. & Reintjes, Ralf & van Steenbergen, Jim E. & Timen, Aura, 2013. "Choosing pandemic parameters for pandemic preparedness planning: A comparison of pandemic scenarios prior to and following the influenza A(H1N1) 2009 pandemic," Health Policy, Elsevier, vol. 109(1), pages 52-62.
    15. Savachkin, Alex & Uribe, Andrés, 2012. "Dynamic redistribution of mitigation resources during influenza pandemics," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 33-45.
    16. T Déirdre Hollingsworth & Don Klinkenberg & Hans Heesterbeek & Roy M Anderson, 2011. "Mitigation Strategies for Pandemic Influenza A: Balancing Conflicting Policy Objectives," PLOS Computational Biology, Public Library of Science, vol. 7(2), pages 1-11, February.
    17. Sunio, Varsolo & Mateo-Babiano, Iderlina, 2022. "Pandemics as ‘windows of opportunity’: Transitioning towards more sustainable and resilient transport systems," Transport Policy, Elsevier, vol. 116(C), pages 175-187.
    18. Yufang Wang & Kuai Xu & Yun Kang & Haiyan Wang & Feng Wang & Adrian Avram, 2020. "Regional Influenza Prediction with Sampling Twitter Data and PDE Model," IJERPH, MDPI, vol. 17(3), pages 1-12, January.
    19. Christian Thiemann & Fabian Theis & Daniel Grady & Rafael Brune & Dirk Brockmann, 2010. "The Structure of Borders in a Small World," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-7, November.
    20. Heinrich, Torsten, 2021. "Epidemics in modern economies," MPRA Paper 107578, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0143799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.