IDEAS home Printed from https://ideas.repec.org/p/stz/wpaper/eth-rc-12-007.html
   My bibliography  Save this paper

Suppressing Epidemics with a Limited Amount of Immunization Units

Author

Listed:
  • C. M. Schneider
  • T. Mihaljev
  • S. Havlin
  • H. J. Herrmann

Abstract

The way diseases spread through schools, epidemics through countries and viruses through the Internet is crucially determining their risk. Although each of these threats has its own characteristics, its underlying network determines the spreading. To restrain the spreading, a widely used approach is the fragmentation of these networks through immunization, so that epidemics cannot spread. Here we develop a novel immunization approach outperforming the best known strategy, based on immunizing the highest betweenness links or nodes. We find that the network's vulnerability can be significantly reduced demonstrating this on three different real networks: the global flight network, a school friendship network and the Internet. In all cases, we find that not only the average infection probability is significantly suppressed, but also for the most relevant case of a small and limited number of immunization units the infection probability can be reduced by up to 55%.

Suggested Citation

  • C. M. Schneider & T. Mihaljev & S. Havlin & H. J. Herrmann, "undated". "Suppressing Epidemics with a Limited Amount of Immunization Units," Working Papers ETH-RC-12-007, ETH Zurich, Chair of Systems Design.
  • Handle: RePEc:stz:wpaper:eth-rc-12-007
    as

    Download full text from publisher

    File URL: ftp://web.sg.ethz.ch/RePEc/stz/wpaper/pdf/ETH-RC-12-007.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    2. Vittoria Colizza & Alain Barrat & Marc Barthelemy & Alain-Jacques Valleron & Alessandro Vespignani, 2007. "Modeling the Worldwide Spread of Pandemic Influenza: Baseline Case and Containment Interventions," PLOS Medicine, Public Library of Science, vol. 4(1), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bouveret, Géraldine & Mandel, Antoine, 2021. "Social interactions and the prophylaxis of SI epidemics on networks," Journal of Mathematical Economics, Elsevier, vol. 93(C).
    2. Yuan, Peiyan & Tang, Shaojie, 2015. "Community-based immunization in opportunistic social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 85-97.
    3. Samuel F Rosenblatt & Jeffrey A Smith & G Robin Gauthier & Laurent Hébert-Dufresne, 2020. "Immunization strategies in networks with missing data," PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-21, July.
    4. Teruyoshi Kobayashi & Kohei Hasui, 2013. "Efficient immunization strategies to prevent financial contagion," Papers 1308.0652, arXiv.org, revised Dec 2013.
    5. Xia, Ling-Ling & Song, Yu-Rong & Li, Chan-Chan & Jiang, Guo-Ping, 2018. "Improved targeted immunization strategies based on two rounds of selection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 540-547.
    6. Chen, Dandan & Zheng, Muhua & Zhao, Ming & Zhang, Yu, 2018. "A dynamic vaccination strategy to suppress the recurrent epidemic outbreaks," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 108-114.
    7. Shams, Bita & Khansari, Mohammad, 2015. "On the impact of epidemic severity on network immunization algorithms," Theoretical Population Biology, Elsevier, vol. 106(C), pages 83-93.
    8. Olivier Tsemogne & Yezekael Hayel & Charles Kamhoua & Gabriel Deugoue, 2022. "A Partially Observable Stochastic Zero-sum Game for a Network Epidemic Control Problem," Dynamic Games and Applications, Springer, vol. 12(1), pages 82-109, March.
    9. Laurent Miclo & Daniel Spiro & Jörgen Weibull, 2020. "Optimal epidemic suppression under an ICU constraint ," Working Papers hal-02563023, HAL.
    10. Laurent Miclo & Daniel Spiro & Jorgen Weibull, 2020. "Optimal epidemic suppression under an ICU constraint," Papers 2005.01327, arXiv.org.
    11. Geraldine Bouveret & Antoine Mandel, 2020. "Prophylaxis of Epidemic Spreading with Transient Dynamics," Papers 2007.07580, arXiv.org.
    12. Yu, Yang & Deng, Ye & Tan, Suo-Yi & Wu, Jun, 2018. "Efficient disintegration strategy in directed networks based on tabu search," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 435-442.
    13. Liu, Xiang-Chun & Zhu, Xu-Zhen & Tian, Hui & Zhang, Zeng-Ping & Wang, Wei, 2019. "Identifying localized influential spreaders of information spreading," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 92-97.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Perc, Matjaž, 2010. "Growth and structure of Slovenia’s scientific collaboration network," Journal of Informetrics, Elsevier, vol. 4(4), pages 475-482.
    2. S. M. Mniszewski & S. Y. Del Valle & P. D. Stroud & J. M. Riese & S. J. Sydoriak, 2008. "Pandemic simulation of antivirals + school closures: buying time until strain-specific vaccine is available," Computational and Mathematical Organization Theory, Springer, vol. 14(3), pages 209-221, September.
    3. Sanjeev Goyal & Fernando Vega-Redondo, 2000. "Learning, Network Formation and Coordination," Econometric Society World Congress 2000 Contributed Papers 0113, Econometric Society.
    4. Floriana Gargiulo & Sônia Ternes & Sylvie Huet & Guillaume Deffuant, 2010. "An Iterative Approach for Generating Statistically Realistic Populations of Households," PLOS ONE, Public Library of Science, vol. 5(1), pages 1-9, January.
    5. Quayle, A.P. & Siddiqui, A.S. & Jones, S.J.M., 2006. "Preferential network perturbation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 823-840.
    6. Chen, Lei & Yue, Dong & Dou, Chunxia, 2019. "Optimization on vulnerability analysis and redundancy protection in interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1216-1226.
    7. Bálint Mészáros & István Simon & Zsuzsanna Dosztányi, 2009. "Prediction of Protein Binding Regions in Disordered Proteins," PLOS Computational Biology, Public Library of Science, vol. 5(5), pages 1-18, May.
    8. Teruhiko Yoneyama & Sanmay Das & Mukkai Krishnamoorthy, 2012. "A Hybrid Model for Disease Spread and an Application to the SARS Pandemic," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 15(1), pages 1-5.
    9. Irina Rish & Guillermo Cecchi & Benjamin Thyreau & Bertrand Thirion & Marion Plaze & Marie Laure Paillere-Martinot & Catherine Martelli & Jean-Luc Martinot & Jean-Baptiste Poline, 2013. "Schizophrenia as a Network Disease: Disruption of Emergent Brain Function in Patients with Auditory Hallucinations," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-15, January.
    10. Wang, Zhuoyang & Chen, Guo & Hill, David J. & Dong, Zhao Yang, 2016. "A power flow based model for the analysis of vulnerability in power networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 105-115.
    11. Bellingeri, Michele & Cassi, Davide & Vincenzi, Simone, 2014. "Efficiency of attack strategies on complex model and real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 174-180.
    12. Bech, Morten L. & Atalay, Enghin, 2010. "The topology of the federal funds market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(22), pages 5223-5246.
    13. Valentini, Luca & Perugini, Diego & Poli, Giampiero, 2007. "The “small-world” topology of rock fracture networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 323-328.
    14. Enrico Zio & Giovanni Sansavini, 2011. "Component Criticality in Failure Cascade Processes of Network Systems," Risk Analysis, John Wiley & Sons, vol. 31(8), pages 1196-1210, August.
    15. Ryan M. Hynes & Bernardo S. Buarque & Ronald B. Davies & Dieter F. Kogler, 2020. "Hops, Skip & a Jump - The Regional Uniqueness of Beer Styles," Working Papers 202013, Geary Institute, University College Dublin.
    16. Pi, Xiaochen & Tang, Longkun & Chen, Xiangzhong, 2021. "A directed weighted scale-free network model with an adaptive evolution mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    17. Lenore Newman & Ann Dale, 2007. "Homophily and Agency: Creating Effective Sustainable Development Networks," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 9(1), pages 79-90, February.
    18. Aybike Ulusan & Ozlem Ergun, 2018. "Restoration of services in disrupted infrastructure systems: A network science approach," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-28, February.
    19. Yang, Hyeonchae & Jung, Woo-Sung, 2016. "Structural efficiency to manipulate public research institution networks," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 21-32.
    20. Deng, Ye & Wu, Jun & Tan, Yue-jin, 2016. "Optimal attack strategy of complex networks based on tabu search," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 74-81.

    More about this item

    Keywords

    suppressing epidemics;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:stz:wpaper:eth-rc-12-007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Claudio J. Tessone (email available below). General contact details of provider: https://edirc.repec.org/data/dmethch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.