IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0128566.html
   My bibliography  Save this article

Identification of Relevant Phytochemical Constituents for Characterization and Authentication of Tomatoes by General Linear Model Linked to Automatic Interaction Detection (GLM-AID) and Artificial Neural Network Models (ANNs)

Author

Listed:
  • Marcos Hernández Suárez
  • Gonzalo Astray Dopazo
  • Dina Larios López
  • Francisco Espinosa

Abstract

There are a large number of tomato cultivars with a wide range of morphological, chemical, nutritional and sensorial characteristics. Many factors are known to affect the nutrient content of tomato cultivars. A complete understanding of the effect of these factors would require an exhaustive experimental design, multidisciplinary scientific approach and a suitable statistical method. Some multivariate analytical techniques such as Principal Component Analysis (PCA) or Factor Analysis (FA) have been widely applied in order to search for patterns in the behaviour and reduce the dimensionality of a data set by a new set of uncorrelated latent variables. However, in some cases it is not useful to replace the original variables with these latent variables. In this study, Automatic Interaction Detection (AID) algorithm and Artificial Neural Network (ANN) models were applied as alternative to the PCA, AF and other multivariate analytical techniques in order to identify the relevant phytochemical constituents for characterization and authentication of tomatoes. To prove the feasibility of AID algorithm and ANN models to achieve the purpose of this study, both methods were applied on a data set with twenty five chemical parameters analysed on 167 tomato samples from Tenerife (Spain). Each tomato sample was defined by three factors: cultivar, agricultural practice and harvest date. General Linear Model linked to AID (GLM-AID) tree-structured was organized into 3 levels according to the number of factors. p-Coumaric acid was the compound the allowed to distinguish the tomato samples according to the day of harvest. More than one chemical parameter was necessary to distinguish among different agricultural practices and among the tomato cultivars. Several ANN models, with 25 and 10 input variables, for the prediction of cultivar, agricultural practice and harvest date, were developed. Finally, the models with 10 input variables were chosen with fit’s goodness between 44 and 100%. The lowest fits were for the cultivar classification, this low percentage suggests that other kind of chemical parameter should be used to identify tomato cultivars.

Suggested Citation

  • Marcos Hernández Suárez & Gonzalo Astray Dopazo & Dina Larios López & Francisco Espinosa, 2015. "Identification of Relevant Phytochemical Constituents for Characterization and Authentication of Tomatoes by General Linear Model Linked to Automatic Interaction Detection (GLM-AID) and Artificial Neu," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-19, June.
  • Handle: RePEc:plo:pone00:0128566
    DOI: 10.1371/journal.pone.0128566
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0128566
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0128566&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0128566?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    2. Bilgili, Mehmet & Sahin, Besir & Yasar, Abdulkadir, 2007. "Application of artificial neural networks for the wind speed prediction of target station using reference stations data," Renewable Energy, Elsevier, vol. 32(14), pages 2350-2360.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
    2. Balkin, Sandy, 2001. "On Forecasting Exchange Rates Using Neural Networks: P.H. Franses and P.V. Homelen, 1998, Applied Financial Economics, 8, 589-596," International Journal of Forecasting, Elsevier, vol. 17(1), pages 139-140.
    3. Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
    4. Daniel Buncic, 2012. "Understanding forecast failure of ESTAR models of real exchange rates," Empirical Economics, Springer, vol. 43(1), pages 399-426, August.
    5. Apostolos Ampountolas & Titus Nyarko Nde & Paresh Date & Corina Constantinescu, 2021. "A Machine Learning Approach for Micro-Credit Scoring," Risks, MDPI, vol. 9(3), pages 1-20, March.
    6. Peng Zhu & Yuante Li & Yifan Hu & Qinyuan Liu & Dawei Cheng & Yuqi Liang, 2024. "LSR-IGRU: Stock Trend Prediction Based on Long Short-Term Relationships and Improved GRU," Papers 2409.08282, arXiv.org, revised Sep 2024.
    7. Ebrahimpour, Reza & Nikoo, Hossein & Masoudnia, Saeed & Yousefi, Mohammad Reza & Ghaemi, Mohammad Sajjad, 2011. "Mixture of MLP-experts for trend forecasting of time series: A case study of the Tehran stock exchange," International Journal of Forecasting, Elsevier, vol. 27(3), pages 804-816, July.
    8. Tascikaraoglu, Akin & Sanandaji, Borhan M. & Poolla, Kameshwar & Varaiya, Pravin, 2016. "Exploiting sparsity of interconnections in spatio-temporal wind speed forecasting using Wavelet Transform," Applied Energy, Elsevier, vol. 165(C), pages 735-747.
    9. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    10. Hu, Jianming & Wang, Jianzhou & Zeng, Guowei, 2013. "A hybrid forecasting approach applied to wind speed time series," Renewable Energy, Elsevier, vol. 60(C), pages 185-194.
    11. Leung, Philip C.M. & Lee, Eric W.M., 2013. "Estimation of electrical power consumption in subway station design by intelligent approach," Applied Energy, Elsevier, vol. 101(C), pages 634-643.
    12. Donya Rahmani & Saeed Heravi & Hossein Hassani & Mansi Ghodsi, 2016. "Forecasting time series with structural breaks with Singular Spectrum Analysis, using a general form of recurrent formula," Papers 1605.02188, arXiv.org.
    13. Wei Sun & Yujun He & Hong Chang, 2015. "Forecasting Fossil Fuel Energy Consumption for Power Generation Using QHSA-Based LSSVM Model," Energies, MDPI, vol. 8(2), pages 1-21, January.
    14. Saman, Corina, 2011. "Scenarios of the Romanian GDP Evolution With Neural Models," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 129-140, December.
    15. Ghiassi, M. & Saidane, H. & Zimbra, D.K., 2005. "A dynamic artificial neural network model for forecasting time series events," International Journal of Forecasting, Elsevier, vol. 21(2), pages 341-362.
    16. Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.
    17. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.
    18. Oscar Claveria & Salvador Torra, 2013. "“Forecasting Business surveys indicators: neural networks vs. time series models”," AQR Working Papers 201312, University of Barcelona, Regional Quantitative Analysis Group, revised Nov 2013.
    19. Bento, P.M.R. & Pombo, J.A.N. & Calado, M.R.A. & Mariano, S.J.P.S., 2018. "A bat optimized neural network and wavelet transform approach for short-term price forecasting," Applied Energy, Elsevier, vol. 210(C), pages 88-97.
    20. Nataša Glišović & Miloš Milenković & Nebojša Bojović & Libor Švadlenka & Zoran Avramović, 2016. "A hybrid model for forecasting the volume of passenger flows on Serbian railways," Operational Research, Springer, vol. 16(2), pages 271-285, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0128566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.