IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v60y2013icp185-194.html
   My bibliography  Save this article

A hybrid forecasting approach applied to wind speed time series

Author

Listed:
  • Hu, Jianming
  • Wang, Jianzhou
  • Zeng, Guowei

Abstract

In this paper, a hybrid forecasting approach, which combines the Ensemble Empirical Mode Decomposition (EEMD) and the Support Vector Machine (SVM), is proposed to improve the quality of wind speed forecasting. The essence of the methodology incorporates three phases. First, the original data of wind speed are decomposed into a number of independent Intrinsic Mode Functions (IMFs) and one residual series by EEMD using the principle of decomposition. In order to forecast these IMFs, excepting the highest frequency acquired by EEMD, the respective estimates are yielded using the SVM algorithm. Finally, these respective estimates are combined into the final wind speed forecasts using the principle of ensemble. The proposed hybrid method is examined by forecasting the mean monthly wind speed of three wind farms located in northwest China. The obtained results confirm an observable improvement for the forecasting validity of the proposed hybrid approach. This tool shows great promise for the forecasting of intricate time series which are intrinsically highly volatile and irregular.

Suggested Citation

  • Hu, Jianming & Wang, Jianzhou & Zeng, Guowei, 2013. "A hybrid forecasting approach applied to wind speed time series," Renewable Energy, Elsevier, vol. 60(C), pages 185-194.
  • Handle: RePEc:eee:renene:v:60:y:2013:i:c:p:185-194
    DOI: 10.1016/j.renene.2013.05.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113002577
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.05.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Zhenhai & Zhao, Weigang & Lu, Haiyan & Wang, Jianzhou, 2012. "Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model," Renewable Energy, Elsevier, vol. 37(1), pages 241-249.
    2. Kavasseri, Rajesh G. & Seetharaman, Krithika, 2009. "Day-ahead wind speed forecasting using f-ARIMA models," Renewable Energy, Elsevier, vol. 34(5), pages 1388-1393.
    3. Monfared, Mohammad & Rastegar, Hasan & Kojabadi, Hossein Madadi, 2009. "A new strategy for wind speed forecasting using artificial intelligent methods," Renewable Energy, Elsevier, vol. 34(3), pages 845-848.
    4. Mohandes, Mohamed A. & Rehman, Shafiqur & Halawani, Talal O., 1998. "A neural networks approach for wind speed prediction," Renewable Energy, Elsevier, vol. 13(3), pages 345-354.
    5. Flores, P. & Tapia, A. & Tapia, G., 2005. "Application of a control algorithm for wind speed prediction and active power generation," Renewable Energy, Elsevier, vol. 30(4), pages 523-536.
    6. Haven, Emmanuel & Liu, Xiaoquan & Shen, Liya, 2012. "De-noising option prices with the wavelet method," European Journal of Operational Research, Elsevier, vol. 222(1), pages 104-112.
    7. Carolin Mabel, M. & Fernandez, E., 2008. "Analysis of wind power generation and prediction using ANN: A case study," Renewable Energy, Elsevier, vol. 33(5), pages 986-992.
    8. Cadenas, Erasmo & Rivera, Wilfrido, 2009. "Short term wind speed forecasting in La Venta, Oaxaca, México, using artificial neural networks," Renewable Energy, Elsevier, vol. 34(1), pages 274-278.
    9. Ackermann, Thomas & Söder, Lennart, 2000. "Wind energy technology and current status: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(4), pages 315-374, December.
    10. Abdel-Aal, R.E. & Elhadidy, M.A. & Shaahid, S.M., 2009. "Modeling and forecasting the mean hourly wind speed time series using GMDH-based abductive networks," Renewable Energy, Elsevier, vol. 34(7), pages 1686-1699.
    11. Mohandes, M.A. & Halawani, T.O. & Rehman, S. & Hussain, Ahmed A., 2004. "Support vector machines for wind speed prediction," Renewable Energy, Elsevier, vol. 29(6), pages 939-947.
    12. Sfetsos, A., 2000. "A comparison of various forecasting techniques applied to mean hourly wind speed time series," Renewable Energy, Elsevier, vol. 21(1), pages 23-35.
    13. Bilgili, Mehmet & Sahin, Besir & Yasar, Abdulkadir, 2007. "Application of artificial neural networks for the wind speed prediction of target station using reference stations data," Renewable Energy, Elsevier, vol. 32(14), pages 2350-2360.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
    2. Liu, Hui & Chen, Chao & Tian, Hong-qi & Li, Yan-fei, 2012. "A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks," Renewable Energy, Elsevier, vol. 48(C), pages 545-556.
    3. Jiani Heng & Chen Wang & Xuejing Zhao & Liye Xiao, 2016. "Research and Application Based on Adaptive Boosting Strategy and Modified CGFPA Algorithm: A Case Study for Wind Speed Forecasting," Sustainability, MDPI, vol. 8(3), pages 1-25, March.
    4. Wang, Jianzhou & Qin, Shanshan & Zhou, Qingping & Jiang, Haiyan, 2015. "Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China," Renewable Energy, Elsevier, vol. 76(C), pages 91-101.
    5. Guo, Zhenhai & Zhao, Weigang & Lu, Haiyan & Wang, Jianzhou, 2012. "Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model," Renewable Energy, Elsevier, vol. 37(1), pages 241-249.
    6. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    7. Tascikaraoglu, A. & Uzunoglu, M., 2014. "A review of combined approaches for prediction of short-term wind speed and power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 243-254.
    8. Ramasamy, P. & Chandel, S.S. & Yadav, Amit Kumar, 2015. "Wind speed prediction in the mountainous region of India using an artificial neural network model," Renewable Energy, Elsevier, vol. 80(C), pages 338-347.
    9. Alma Y. Alanis & Oscar D. Sanchez & Jesus G. Alvarez, 2021. "Time Series Forecasting for Wind Energy Systems Based on High Order Neural Networks," Mathematics, MDPI, vol. 9(10), pages 1-18, May.
    10. Jinliang Zhang & YiMing Wei & Zhong-fu Tan & Wang Ke & Wei Tian, 2017. "A Hybrid Method for Short-Term Wind Speed Forecasting," Sustainability, MDPI, vol. 9(4), pages 1-10, April.
    11. Lei, Ma & Shiyan, Luan & Chuanwen, Jiang & Hongling, Liu & Yan, Zhang, 2009. "A review on the forecasting of wind speed and generated power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 915-920, May.
    12. Cadenas, Erasmo & Rivera, Wilfrido, 2010. "Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA–ANN model," Renewable Energy, Elsevier, vol. 35(12), pages 2732-2738.
    13. Kiplangat, Dennis C. & Asokan, K. & Kumar, K. Satheesh, 2016. "Improved week-ahead predictions of wind speed using simple linear models with wavelet decomposition," Renewable Energy, Elsevier, vol. 93(C), pages 38-44.
    14. Kusiak, Andrew & Zhang, Zijun & Verma, Anoop, 2013. "Prediction, operations, and condition monitoring in wind energy," Energy, Elsevier, vol. 60(C), pages 1-12.
    15. Santamaría-Bonfil, G. & Reyes-Ballesteros, A. & Gershenson, C., 2016. "Wind speed forecasting for wind farms: A method based on support vector regression," Renewable Energy, Elsevier, vol. 85(C), pages 790-809.
    16. Yu, Jie & Chen, Kuilin & Mori, Junichi & Rashid, Mudassir M., 2013. "A Gaussian mixture copula model based localized Gaussian process regression approach for long-term wind speed prediction," Energy, Elsevier, vol. 61(C), pages 673-686.
    17. Zhao, Pan & Wang, Jiangfeng & Xia, Junrong & Dai, Yiping & Sheng, Yingxin & Yue, Jie, 2012. "Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China," Renewable Energy, Elsevier, vol. 43(C), pages 234-241.
    18. Jung, Sungmoon & Kwon, Soon-Duck, 2013. "Weighted error functions in artificial neural networks for improved wind energy potential estimation," Applied Energy, Elsevier, vol. 111(C), pages 778-790.
    19. Li, Gong & Shi, Jing & Zhou, Junyi, 2011. "Bayesian adaptive combination of short-term wind speed forecasts from neural network models," Renewable Energy, Elsevier, vol. 36(1), pages 352-359.
    20. Drisya, G.V. & Asokan, K. & Kumar, K. Satheesh, 2018. "Diverse dynamical characteristics across the frequency spectrum of wind speed fluctuations," Renewable Energy, Elsevier, vol. 119(C), pages 540-550.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:60:y:2013:i:c:p:185-194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.