IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0127834.html
   My bibliography  Save this article

Use HypE to Hide Association Rules by Adding Items

Author

Listed:
  • Peng Cheng
  • Chun-Wei Lin
  • Jeng-Shyang Pan

Abstract

During business collaboration, partners may benefit through sharing data. People may use data mining tools to discover useful relationships from shared data. However, some relationships are sensitive to the data owners and they hope to conceal them before sharing. In this paper, we address this problem in forms of association rule hiding. A hiding method based on evolutionary multi-objective optimization (EMO) is proposed, which performs the hiding task by selectively inserting items into the database to decrease the confidence of sensitive rules below specified thresholds. The side effects generated during the hiding process are taken as optimization goals to be minimized. HypE, a recently proposed EMO algorithm, is utilized to identify promising transactions for modification to minimize side effects. Results on real datasets demonstrate that the proposed method can effectively perform sanitization with fewer damages to the non-sensitive knowledge in most cases.

Suggested Citation

  • Peng Cheng & Chun-Wei Lin & Jeng-Shyang Pan, 2015. "Use HypE to Hide Association Rules by Adding Items," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-19, June.
  • Handle: RePEc:plo:pone00:0127834
    DOI: 10.1371/journal.pone.0127834
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0127834
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0127834&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0127834?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Beume, Nicola & Naujoks, Boris & Emmerich, Michael, 2007. "SMS-EMOA: Multiobjective selection based on dominated hypervolume," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1653-1669, September.
    2. Syam Menon & Sumit Sarkar, 2007. "Minimizing Information Loss and Preserving Privacy," Management Science, INFORMS, vol. 53(1), pages 101-116, January.
    3. Syam Menon & Sumit Sarkar & Shibnath Mukherjee, 2005. "Maximizing Accuracy of Shared Databases when Concealing Sensitive Patterns," Information Systems Research, INFORMS, vol. 16(3), pages 256-270, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Syam Menon & Abhijeet Ghoshal & Sumit Sarkar, 2022. "Modifying Transactional Databases to Hide Sensitive Association Rules," Information Systems Research, INFORMS, vol. 33(1), pages 152-178, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Syam Menon & Abhijeet Ghoshal & Sumit Sarkar, 2022. "Modifying Transactional Databases to Hide Sensitive Association Rules," Information Systems Research, INFORMS, vol. 33(1), pages 152-178, March.
    2. Abhijeet Ghoshal & Jing Hao & Syam Menon & Sumit Sarkar, 2020. "Hiding Sensitive Information when Sharing Distributed Transactional Data," Information Systems Research, INFORMS, vol. 31(2), pages 473-490, June.
    3. Xiao-Bai Li & Jialun Qin, 2017. "Anonymizing and Sharing Medical Text Records," Information Systems Research, INFORMS, vol. 28(2), pages 332-352, June.
    4. Liagkouras, Konstantinos & Metaxiotis, Konstantinos, 2021. "Improving multi-objective algorithms performance by emulating behaviors from the human social analogue in candidate solutions," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1019-1036.
    5. Gong, Wenyin & Cai, Zhihua, 2009. "An improved multiobjective differential evolution based on Pareto-adaptive [epsilon]-dominance and orthogonal design," European Journal of Operational Research, Elsevier, vol. 198(2), pages 576-601, October.
    6. Andrea Ponti & Antonio Candelieri & Ilaria Giordani & Francesco Archetti, 2023. "Intrusion Detection in Networks by Wasserstein Enabled Many-Objective Evolutionary Algorithms," Mathematics, MDPI, vol. 11(10), pages 1-14, May.
    7. David Quintana & Roman Denysiuk & Sandra García-Rodríguez & Antonio Gaspar-Cunha, 2017. "Portfolio implementation risk management using evolutionary multiobjective optimization," Post-Print hal-01881379, HAL.
    8. Yunsong Han & Hong Yu & Cheng Sun, 2017. "Simulation-Based Multiobjective Optimization of Timber-Glass Residential Buildings in Severe Cold Regions," Sustainability, MDPI, vol. 9(12), pages 1-18, December.
    9. Yeudiel Lara Moreno & Carlos Ignacio Hernández Castellanos, 2024. "A Hierarchical Approach to a Tri-Objective Portfolio Optimization Problem Considering an ESG Index," Mathematics, MDPI, vol. 12(19), pages 1-16, October.
    10. Laumanns, Marco & Zenklusen, Rico, 2011. "Stochastic convergence of random search methods to fixed size Pareto front approximations," European Journal of Operational Research, Elsevier, vol. 213(2), pages 414-421, September.
    11. Ivo Couckuyt & Dirk Deschrijver & Tom Dhaene, 2014. "Fast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimization," Journal of Global Optimization, Springer, vol. 60(3), pages 575-594, November.
    12. Derbel, Bilel & Humeau, Jérémie & Liefooghe, Arnaud & Verel, Sébastien, 2014. "Distributed localized bi-objective search," European Journal of Operational Research, Elsevier, vol. 239(3), pages 731-743.
    13. Hang Xu, 2024. "A Dynamic Tasking-Based Evolutionary Algorithm for Bi-Objective Feature Selection," Mathematics, MDPI, vol. 12(10), pages 1-23, May.
    14. Sergio Cabello, 2023. "Faster distance-based representative skyline and k-center along pareto front in the plane," Journal of Global Optimization, Springer, vol. 86(2), pages 441-466, June.
    15. Sven Schulz & Udo Buscher & Liji Shen, 2020. "Multi-objective hybrid flow shop scheduling with variable discrete production speed levels and time-of-use energy prices," Journal of Business Economics, Springer, vol. 90(9), pages 1315-1343, November.
    16. Lourdes Uribe & Johan M Bogoya & Andrés Vargas & Adriana Lara & Günter Rudolph & Oliver Schütze, 2020. "A Set Based Newton Method for the Averaged Hausdorff Distance for Multi-Objective Reference Set Problems," Mathematics, MDPI, vol. 8(10), pages 1-29, October.
    17. Houssem R. E. H. Bouchekara & Yusuf A. Sha’aban & Mohammad S. Shahriar & Makbul A. M. Ramli & Abdullahi A. Mas’ud, 2023. "Wind Farm Layout Optimization/Expansion with Real Wind Turbines Using a Multi-Objective EA Based on an Enhanced Inverted Generational Distance Metric Combined with the Two-Archive Algorithm 2," Sustainability, MDPI, vol. 15(3), pages 1-32, January.
    18. Yugong Dang & Hongen Ma & Jun Wang & Zhigang Zhou & Zhidong Xu, 2022. "An Improved Multi-Objective Optimization Decision Method Using NSGA-III for a Bivariate Precision Fertilizer Applicator," Agriculture, MDPI, vol. 12(9), pages 1-23, September.
    19. Álvaro Rubio-Largo & Miguel Vega-Rodríguez & David González-Álvarez, 2015. "Multiobjective swarm intelligence for the traffic grooming problem," Computational Optimization and Applications, Springer, vol. 60(2), pages 479-511, March.
    20. Taimoor Akhtar & Christine Shoemaker, 2016. "Multi objective optimization of computationally expensive multi-modal functions with RBF surrogates and multi-rule selection," Journal of Global Optimization, Springer, vol. 64(1), pages 17-32, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0127834. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.