IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1001156.html
   My bibliography  Save this article

A Novel Adaptive Method for the Analysis of Next-Generation Sequencing Data to Detect Complex Trait Associations with Rare Variants Due to Gene Main Effects and Interactions

Author

Listed:
  • Dajiang J Liu
  • Suzanne M Leal

Abstract

There is solid evidence that rare variants contribute to complex disease etiology. Next-generation sequencing technologies make it possible to uncover rare variants within candidate genes, exomes, and genomes. Working in a novel framework, the kernel-based adaptive cluster (KBAC) was developed to perform powerful gene/locus based rare variant association testing. The KBAC combines variant classification and association testing in a coherent framework. Covariates can also be incorporated in the analysis to control for potential confounders including age, sex, and population substructure. To evaluate the power of KBAC: 1) variant data was simulated using rigorous population genetic models for both Europeans and Africans, with parameters estimated from sequence data, and 2) phenotypes were generated using models motivated by complex diseases including breast cancer and Hirschsprung's disease. It is demonstrated that the KBAC has superior power compared to other rare variant analysis methods, such as the combined multivariate and collapsing and weight sum statistic. In the presence of variant misclassification and gene interaction, association testing using KBAC is particularly advantageous. The KBAC method was also applied to test for associations, using sequence data from the Dallas Heart Study, between energy metabolism traits and rare variants in ANGPTL 3,4,5 and 6 genes. A number of novel associations were identified, including the associations of high density lipoprotein and very low density lipoprotein with ANGPTL4. The KBAC method is implemented in a user-friendly R package.Author Summary: It has been demonstrated that both rare and common variants are involved in complex disease etiology. Until recently it was only possible to perform large scale analysis of common variants. With the development of next-generation sequencing technologies, detection and mapping of rare variants have been made possible. However, methods used to analyze common variants are not powerful for the analysis of rare variants. To address the problems of rare variant analysis working in a novel framework, the kernel-based adaptive cluster (KBAC) method was developed to perform gene/locus based analysis. The KBAC combines variant classification and association testing in a coherent framework. Through simulations motivated by population genetic and disease data, it is demonstrated that the KBAC has superior power to other rare variant analysis methods, especially in the presence of variant misclassification and gene interaction. Using data from the Dallas Heart Study, the KBAC method was applied to test for associations between energy metabolism traits and rare variants in ANGPTL 3,4,5 and 6 genes. A number of novel associations were identified. The KBAC method is implemented in a user-friendly R package.

Suggested Citation

  • Dajiang J Liu & Suzanne M Leal, 2010. "A Novel Adaptive Method for the Analysis of Next-Generation Sequencing Data to Detect Complex Trait Associations with Rare Variants Due to Gene Main Effects and Interactions," PLOS Genetics, Public Library of Science, vol. 6(10), pages 1-14, October.
  • Handle: RePEc:plo:pgen00:1001156
    DOI: 10.1371/journal.pgen.1001156
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1001156
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1001156&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1001156?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chung-Feng Kao & Jia-Rou Liu & Hung Hung & Po-Hsiu Kuo, 2015. "A Robust GWSS Method to Simultaneously Detect Rare and Common Variants for Complex Disease," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-14, April.
    2. Elodie Persyn & Richard Redon & Lise Bellanger & Christian Dina, 2018. "The impact of a fine-scale population stratification on rare variant association test results," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-17, December.
    3. Zheng Xu & Song Yan & Cong Wu & Qing Duan & Sixia Chen & Yun Li, 2023. "Next-Generation Sequencing Data-Based Association Testing of a Group of Genetic Markers for Complex Responses Using a Generalized Linear Model Framework," Mathematics, MDPI, vol. 11(11), pages 1-28, June.
    4. Zheng Xu, 2023. "Association Testing of a Group of Genetic Markers Based on Next-Generation Sequencing Data and Continuous Response Using a Linear Model Framework," Mathematics, MDPI, vol. 11(6), pages 1-32, March.
    5. Brandon Coombes & Saonli Basu & Sharmistha Guha & Nicholas Schork, 2015. "Weighted Score Tests Implementing Model-Averaging Schemes in Detection of Rare Variants in Case-Control Studies," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-21, October.
    6. Weiming Zhang & Michael P. Epstein & Tasha E. Fingerlin & Debashis Ghosh, 2017. "Links Between the Sequence Kernel Association and the Kernel-Based Adaptive Cluster Tests," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(1), pages 246-258, June.
    7. Yuanjia Wang & Yin-Hsiu Chen & Qiong Yang, 2012. "Joint Rare Variant Association Test of the Average and Individual Effects for Sequencing Studies," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-13, March.
    8. Ruth Greenblatt & Peter Bacchetti & Ross Boylan & Kord Kober & Gayle Springer & Kathryn Anastos & Michael Busch & Mardge Cohen & Seble Kassaye & Deborah Gustafson & Bradley Aouizerat & on behalf of th, 2019. "Genetic and clinical predictors of CD4 lymphocyte recovery during suppressive antiretroviral therapy: Whole exome sequencing and antiretroviral therapy response phenotypes," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-25, August.
    9. Martin Ladouceur & Zari Dastani & Yurii S Aulchenko & Celia M T Greenwood & J Brent Richards, 2012. "The Empirical Power of Rare Variant Association Methods: Results from Sanger Sequencing in 1,998 Individuals," PLOS Genetics, Public Library of Science, vol. 8(2), pages 1-11, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1001156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.