IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i11p2560-d1163047.html
   My bibliography  Save this article

Next-Generation Sequencing Data-Based Association Testing of a Group of Genetic Markers for Complex Responses Using a Generalized Linear Model Framework

Author

Listed:
  • Zheng Xu

    (Department of Mathematics and Statistics, Wright State University, Dayton, OH 45324, USA)

  • Song Yan

    (Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
    Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
    Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
    Deceased author.)

  • Cong Wu

    (Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE 68508, USA)

  • Qing Duan

    (Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
    Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
    Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA)

  • Sixia Chen

    (Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA)

  • Yun Li

    (Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
    Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
    Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA)

Abstract

To study the relationship between genetic variants and phenotypes, association testing is adopted; however, most association studies are conducted by genotype-based testing. Testing methods based on next-generation sequencing (NGS) data without genotype calling demonstrate an advantage over testing methods based on genotypes in the scenarios when genotype estimation is not accurate. Our objective was to develop NGS data-based methods for association studies to fill the gap in the literature. Single-variant testing methods based on NGS data have been proposed, including our previously proposed single-variant NGS data-based testing method, i.e., UNC combo method. The NGS data-based group testing method has been proposed by us using a linear model framework which can handle continuous responses. In this paper, we extend our linear model-based framework to a generalized linear model-based framework so that the methods can handle other types of responses especially binary responses which is a common problem in association studies. To evaluate the performance of various estimators and compare them we performed simulation studies. We found that all methods have Type I errors controlled, and our NGS data-based methods have better performance than genotype-based methods for other types of responses, including binary responses (logistics regression) and count responses (Poisson regression), especially when sequencing depth is low. We have extended our previous linear model (LM) framework to a generalized linear model (GLM) framework and derived NGS data-based methods for a group of genetic variables. Compared with our previously proposed LM-based methods, the new GLM-based methods can handle more complex responses (for example, binary responses and count responses) in addition to continuous responses. Our methods have filled the literature gap and shown advantage over their corresponding genotype-based methods in the literature.

Suggested Citation

  • Zheng Xu & Song Yan & Cong Wu & Qing Duan & Sixia Chen & Yun Li, 2023. "Next-Generation Sequencing Data-Based Association Testing of a Group of Genetic Markers for Complex Responses Using a Generalized Linear Model Framework," Mathematics, MDPI, vol. 11(11), pages 1-28, June.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:11:p:2560-:d:1163047
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/11/2560/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/11/2560/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Iuliana Ionita-Laza & Joseph D Buxbaum & Nan M Laird & Christoph Lange, 2011. "A New Testing Strategy to Identify Rare Variants with Either Risk or Protective Effect on Disease," PLOS Genetics, Public Library of Science, vol. 7(2), pages 1-6, February.
    2. Vincent Plagnol & Jason D Cooper & John A Todd & David G Clayton, 2007. "A Method to Address Differential Bias in Genotyping in Large-Scale Association Studies," PLOS Genetics, Public Library of Science, vol. 3(5), pages 1-9, May.
    3. Zheng Xu, 2023. "Association Testing of a Group of Genetic Markers Based on Next-Generation Sequencing Data and Continuous Response Using a Linear Model Framework," Mathematics, MDPI, vol. 11(6), pages 1-32, March.
    4. Dajiang J Liu & Suzanne M Leal, 2010. "A Novel Adaptive Method for the Analysis of Next-Generation Sequencing Data to Detect Complex Trait Associations with Rare Variants Due to Gene Main Effects and Interactions," PLOS Genetics, Public Library of Science, vol. 6(10), pages 1-14, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng Xu, 2023. "Association Testing of a Group of Genetic Markers Based on Next-Generation Sequencing Data and Continuous Response Using a Linear Model Framework," Mathematics, MDPI, vol. 11(6), pages 1-32, March.
    2. Chung-Feng Kao & Jia-Rou Liu & Hung Hung & Po-Hsiu Kuo, 2015. "A Robust GWSS Method to Simultaneously Detect Rare and Common Variants for Complex Disease," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-14, April.
    3. Martin Ladouceur & Zari Dastani & Yurii S Aulchenko & Celia M T Greenwood & J Brent Richards, 2012. "The Empirical Power of Rare Variant Association Methods: Results from Sanger Sequencing in 1,998 Individuals," PLOS Genetics, Public Library of Science, vol. 8(2), pages 1-11, February.
    4. Elodie Persyn & Richard Redon & Lise Bellanger & Christian Dina, 2018. "The impact of a fine-scale population stratification on rare variant association test results," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-17, December.
    5. Ruth Greenblatt & Peter Bacchetti & Ross Boylan & Kord Kober & Gayle Springer & Kathryn Anastos & Michael Busch & Mardge Cohen & Seble Kassaye & Deborah Gustafson & Bradley Aouizerat & on behalf of th, 2019. "Genetic and clinical predictors of CD4 lymphocyte recovery during suppressive antiretroviral therapy: Whole exome sequencing and antiretroviral therapy response phenotypes," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-25, August.
    6. Nanye Long & Samuel P Dickson & Jessica M Maia & Hee Shin Kim & Qianqian Zhu & Andrew S Allen, 2013. "Leveraging Prior Information to Detect Causal Variants via Multi-Variant Regression," PLOS Computational Biology, Public Library of Science, vol. 9(6), pages 1-11, June.
    7. Ren-Hua Chung & Wei-Yun Tsai & Eden R Martin, 2014. "Family-Based Association Test Using Both Common and Rare Variants and Accounting for Directions of Effects for Sequencing Data," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-7, September.
    8. Yuanjia Wang & Yin-Hsiu Chen & Qiong Yang, 2012. "Joint Rare Variant Association Test of the Average and Individual Effects for Sequencing Studies," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-13, March.
    9. Ahn Kwangmi & Gordon Derek & Finch Stephen J, 2009. "Increase of Rejection Rate in Case-Control Studies with the Differential Genotyping Error Rates," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-11, May.
    10. Brandon Coombes & Saonli Basu & Sharmistha Guha & Nicholas Schork, 2015. "Weighted Score Tests Implementing Model-Averaging Schemes in Detection of Rare Variants in Case-Control Studies," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-21, October.
    11. Weiming Zhang & Michael P. Epstein & Tasha E. Fingerlin & Debashis Ghosh, 2017. "Links Between the Sequence Kernel Association and the Kernel-Based Adaptive Cluster Tests," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(1), pages 246-258, June.
    12. Daniel D Kinnamon & Ray E Hershberger & Eden R Martin, 2012. "Reconsidering Association Testing Methods Using Single-Variant Test Statistics as Alternatives to Pooling Tests for Sequence Data with Rare Variants," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:11:p:2560-:d:1163047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.