IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0116489.html
   My bibliography  Save this article

Detection of a Novel, Integrative Aging Process Suggests Complex Physiological Integration

Author

Listed:
  • Alan A Cohen
  • Emmanuel Milot
  • Qing Li
  • Patrick Bergeron
  • Roxane Poirier
  • Francis Dusseault-Bélanger
  • Tamàs Fülöp
  • Maxime Leroux
  • Véronique Legault
  • E Jeffrey Metter
  • Linda P Fried
  • Luigi Ferrucci

Abstract

Many studies of aging examine biomarkers one at a time, but complex systems theory and network theory suggest that interpretations of individual markers may be context-dependent. Here, we attempted to detect underlying processes governing the levels of many biomarkers simultaneously by applying principal components analysis to 43 common clinical biomarkers measured longitudinally in 3694 humans from three longitudinal cohort studies on two continents (Women’s Health and Aging I & II, InCHIANTI, and the Baltimore Longitudinal Study on Aging). The first axis was associated with anemia, inflammation, and low levels of calcium and albumin. The axis structure was precisely reproduced in all three populations and in all demographic sub-populations (by sex, race, etc.); we call the process represented by the axis “integrated albunemia.” Integrated albunemia increases and accelerates with age in all populations, and predicts mortality and frailty – but not chronic disease – even after controlling for age. This suggests a role in the aging process, though causality is not yet clear. Integrated albunemia behaves more stably across populations than its component biomarkers, and thus appears to represent a higher-order physiological process emerging from the structure of underlying regulatory networks. If this is correct, detection of this process has substantial implications for physiological organization more generally.

Suggested Citation

  • Alan A Cohen & Emmanuel Milot & Qing Li & Patrick Bergeron & Roxane Poirier & Francis Dusseault-Bélanger & Tamàs Fülöp & Maxime Leroux & Véronique Legault & E Jeffrey Metter & Linda P Fried & Luigi Fe, 2015. "Detection of a Novel, Integrative Aging Process Suggests Complex Physiological Integration," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-26, March.
  • Handle: RePEc:plo:pone00:0116489
    DOI: 10.1371/journal.pone.0116489
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0116489
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0116489&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0116489?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hiroaki Kitano, 2002. "Computational systems biology," Nature, Nature, vol. 420(6912), pages 206-210, November.
    2. Hadfield, Jarrod D., 2010. "MCMC Methods for Multi-Response Generalized Linear Mixed Models: The MCMCglmm R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i02).
    3. Carl A B Pearson & Chen Zeng & Rahul Simha, 2013. "Network Class Superposition Analyses," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-10, April.
    4. Leonard Guarente & Cynthia Kenyon, 2000. "Genetic pathways that regulate ageing in model organisms," Nature, Nature, vol. 408(6809), pages 255-262, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. I. Albarrán & P. Alonso-González & J. M. Marin, 2017. "Some criticism to a general model in Solvency II: an explanation from a clustering point of view," Empirical Economics, Springer, vol. 52(4), pages 1289-1308, June.
    2. Andrés López-Sepulcre & Sebastiano De Bona & Janne K. Valkonen & Kate D.L. Umbers & Johanna Mappes, 2015. "Item Response Trees: a recommended method for analyzing categorical data in behavioral studies," Behavioral Ecology, International Society for Behavioral Ecology, vol. 26(5), pages 1268-1273.
    3. Jesse Shore & Ethan Bernstein & David Lazer, 2014. "Facts and Figuring: An Experimental Investigation of Network Structure and Performance in Information and Solution Spaces," Harvard Business School Working Papers 14-075, Harvard Business School, revised Jun 2014.
    4. Weliton Menário & Wendy J King & Timothée Bonnet & Marco Festa-Bianchet & Loeske E B Kruuk, 2023. "Early-life behavior, survival, and maternal personality in a wild marsupial," Behavioral Ecology, International Society for Behavioral Ecology, vol. 34(6), pages 1002-1012.
    5. Jesús Hernando Gómez & Pablo Benavides & Juan Diego Maldonado & Juliana Jaramillo & Flor Edith Acevedo & Zulma Nancy Gil, 2023. "Flower-Visiting Insects Ensure Coffee Yield and Quality," Agriculture, MDPI, vol. 13(7), pages 1-15, July.
    6. Bakar, Khandoker Shuvo & Sahu, Sujit K., 2015. "spTimer: Spatio-Temporal Bayesian Modeling Using R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i15).
    7. Amoroso, S., 2013. "Heterogeneity of innovative, collaborative, and productive firm-level processes," Other publications TiSEM f5784a49-7053-401d-855d-1, Tilburg University, School of Economics and Management.
    8. Chandra, Yanto & Wilkinson, Ian F., 2017. "Firm internationalization from a network-centric complex-systems perspective," Journal of World Business, Elsevier, vol. 52(5), pages 691-701.
    9. Kandt, Jens & Leak, Alistair, 2019. "Examining inclusive mobility through smartcard data: What shall we make of senior citizens' declining bus patronage in the West Midlands?," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    10. Hart, Jordan D. A. & Franks, Daniel Wayne & Brent, Lauren & Weiss, Michael N., 2022. "bisonR - Bayesian Inference of Social Networks with R," OSF Preprints ywu7j, Center for Open Science.
    11. Mika Gustafsson & Michael Hörnquist, 2010. "Gene Expression Prediction by Soft Integration and the Elastic Net—Best Performance of the DREAM3 Gene Expression Challenge," PLOS ONE, Public Library of Science, vol. 5(2), pages 1-8, February.
    12. Tuomo Jaakkonen & Sami M. Kivelä & Christoph M. Meier & Jukka T. Forsman, 2015. "The use and relative importance of intraspecific and interspecific social information in a bird community," Behavioral Ecology, International Society for Behavioral Ecology, vol. 26(1), pages 55-64.
    13. Mohamed M. Mostafa, 2016. "Post-materialism, Religiosity, Political Orientation, Locus of Control and Concern for Global Warming: A Multilevel Analysis Across 40 Nations," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 128(3), pages 1273-1298, September.
    14. Alexander Robitzsch, 2021. "A Comprehensive Simulation Study of Estimation Methods for the Rasch Model," Stats, MDPI, vol. 4(4), pages 1-23, October.
    15. Ashleigh S Griffin & Suzanne H Alonzo & Charlie K Cornwallis, 2013. "Why Do Cuckolded Males Provide Paternal Care?," PLOS Biology, Public Library of Science, vol. 11(3), pages 1-9, March.
    16. Jamie Dunning & Terry Burke & Alex Hoi Hang Chan & Heung Ying Janet Chik & Tim Evans & Julia Schroeder, 2023. "Opposite-sex associations are linked with annual fitness, but sociality is stable over lifetime," Behavioral Ecology, International Society for Behavioral Ecology, vol. 34(3), pages 315-324.
    17. Niki Vermeulen, 2018. "The choreography of a new research field: Aggregation, circulation and oscillation," Environment and Planning A, , vol. 50(8), pages 1764-1784, November.
    18. Krieg Sabine & Boonstra Harm Jan & Smeets Marc, 2016. "Small-Area Estimation with Zero-Inflated Data – a Simulation Study," Journal of Official Statistics, Sciendo, vol. 32(4), pages 963-986, December.
    19. Alonso, Pablo J., 2011. "Why using a general model in Solvency II is not a good idea : an explanation from a Bayesian point of view," DES - Working Papers. Statistics and Econometrics. WS ws113729, Universidad Carlos III de Madrid. Departamento de Estadística.
    20. Armaghan W Naik & Joshua D Kangas & Christopher J Langmead & Robert F Murphy, 2013. "Efficient Modeling and Active Learning Discovery of Biological Responses," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-1, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0116489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.