IDEAS home Printed from https://ideas.repec.org/a/oup/beheco/v26y2015i5p1268-1273..html
   My bibliography  Save this article

Item Response Trees: a recommended method for analyzing categorical data in behavioral studies

Author

Listed:
  • Andrés López-Sepulcre
  • Sebastiano De Bona
  • Janne K. Valkonen
  • Kate D.L. Umbers
  • Johanna Mappes

Abstract

Behavioral data are notable for presenting challenges to their statistical analysis, often due to the difficulties in measuring behavior on a quantitative scale. Instead, a range of qualitative alternative responses is recorded. These can often be understood as the outcome of a sequence of binary decisions. For example, faced by a predator, an individual may decide to flee or stay. If it stays, it may decide to freeze or display a threat and if it displays a threat, it may choose from several alternative forms of display. Here we argue that instead of being analyzed using traditional nonparametric statistics or a series of separate analyses split by response categories, this kind of data can be more holistically analyzed using a generalized linear mixed model (GLMM) framework extended to binomial response trees. Originally devised for the social sciences to analyze questionnaires with multiple-choice answers, this approach can easily be applied to behavioral data using existing GLMM software. We illustrate its use with 2 representative examples: 1) repeatability in the measurement of antipredator display escalation and 2) the analysis of predator responses to prey appearance.

Suggested Citation

  • Andrés López-Sepulcre & Sebastiano De Bona & Janne K. Valkonen & Kate D.L. Umbers & Johanna Mappes, 2015. "Item Response Trees: a recommended method for analyzing categorical data in behavioral studies," Behavioral Ecology, International Society for Behavioral Ecology, vol. 26(5), pages 1268-1273.
  • Handle: RePEc:oup:beheco:v:26:y:2015:i:5:p:1268-1273.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/beheco/arv091
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Holger Schielzeth & Wolfgang Forstmeier, 2009. "Conclusions beyond support: overconfident estimates in mixed models," Behavioral Ecology, International Society for Behavioral Ecology, vol. 20(2), pages 416-420.
    2. Hadfield, Jarrod D., 2010. "MCMC Methods for Multi-Response Generalized Linear Mixed Models: The MCMCglmm R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i02).
    3. Alice Guilleux & Myriam Blanchin & Jean-Benoit Hardouin & Véronique Sébille, 2014. "Power and Sample Size Determination in the Rasch Model: Evaluation of the Robustness of a Numerical Method to Non-Normality of the Latent Trait," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-7, January.
    4. De Boeck, Paul & Partchev, Ivailo, 2012. "IRTrees: Tree-Based Item Response Models of the GLMM Family," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(c01).
    5. De Boeck, Paul & Bakker, Marjan & Zwitser, Robert & Nivard, Michel & Hofman, Abe & Tuerlinckx, Francis & Partchev, Ivailo, 2011. "The Estimation of Item Response Models with the lmer Function from the lme4 Package in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 39(i12).
    6. Michael D. Jennions & Anders Pape Møller, 2003. "A survey of the statistical power of research in behavioral ecology and animal behavior," Behavioral Ecology, International Society for Behavioral Ecology, vol. 14(3), pages 438-445, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niccolò Cao & Antonio Calcagnì, 2022. "Jointly Modeling Rating Responses and Times with Fuzzy Numbers: An Application to Psychometric Data," Mathematics, MDPI, vol. 10(7), pages 1-11, March.
    2. John A. List, 2024. "Optimally generate policy-based evidence before scaling," Nature, Nature, vol. 626(7999), pages 491-499, February.
    3. I. Albarrán & P. Alonso-González & J. M. Marin, 2017. "Some criticism to a general model in Solvency II: an explanation from a clustering point of view," Empirical Economics, Springer, vol. 52(4), pages 1289-1308, June.
    4. Jesse Shore & Ethan Bernstein & David Lazer, 2014. "Facts and Figuring: An Experimental Investigation of Network Structure and Performance in Information and Solution Spaces," Harvard Business School Working Papers 14-075, Harvard Business School, revised Jun 2014.
    5. Weliton Menário & Wendy J King & Timothée Bonnet & Marco Festa-Bianchet & Loeske E B Kruuk, 2023. "Early-life behavior, survival, and maternal personality in a wild marsupial," Behavioral Ecology, International Society for Behavioral Ecology, vol. 34(6), pages 1002-1012.
    6. Bakar, Khandoker Shuvo & Sahu, Sujit K., 2015. "spTimer: Spatio-Temporal Bayesian Modeling Using R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i15).
    7. Syed Latifi & Okan Bulut & Mark Gierl & Thomas Christie & Shehzad Jeeva, 2016. "Differential Performance on National Exams," SAGE Open, , vol. 6(2), pages 21582440166, June.
    8. Daniele Fanelli, 2012. "Negative results are disappearing from most disciplines and countries," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(3), pages 891-904, March.
    9. Amoroso, S., 2013. "Heterogeneity of innovative, collaborative, and productive firm-level processes," Other publications TiSEM f5784a49-7053-401d-855d-1, Tilburg University, School of Economics and Management.
    10. Eszter Czibor & David Jimenez‐Gomez & John A. List, 2019. "The Dozen Things Experimental Economists Should Do (More of)," Southern Economic Journal, John Wiley & Sons, vol. 86(2), pages 371-432, October.
    11. Joshua B. Gilbert & James S. Kim & Luke W. Miratrix, 2023. "Modeling Item-Level Heterogeneous Treatment Effects With the Explanatory Item Response Model: Leveraging Large-Scale Online Assessments to Pinpoint the Impact of Educational Interventions," Journal of Educational and Behavioral Statistics, , vol. 48(6), pages 889-913, December.
    12. Kandt, Jens & Leak, Alistair, 2019. "Examining inclusive mobility through smartcard data: What shall we make of senior citizens' declining bus patronage in the West Midlands?," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    13. Hart, Jordan D. A. & Franks, Daniel Wayne & Brent, Lauren & Weiss, Michael N., 2022. "bisonR - Bayesian Inference of Social Networks with R," OSF Preprints ywu7j, Center for Open Science.
    14. Eliot Abrams & Jonathan Libgober & John A. List, 2020. "Research Registries: Facts, Myths, and Possible Improvements," NBER Working Papers 27250, National Bureau of Economic Research, Inc.
    15. Kuan-Yu Jin & Yi-Jhen Wu & Hui-Fang Chen, 2022. "A New Multiprocess IRT Model With Ideal Points for Likert-Type Items," Journal of Educational and Behavioral Statistics, , vol. 47(3), pages 297-321, June.
    16. Tuomo Jaakkonen & Sami M. Kivelä & Christoph M. Meier & Jukka T. Forsman, 2015. "The use and relative importance of intraspecific and interspecific social information in a bird community," Behavioral Ecology, International Society for Behavioral Ecology, vol. 26(1), pages 55-64.
    17. Mohamed M. Mostafa, 2016. "Post-materialism, Religiosity, Political Orientation, Locus of Control and Concern for Global Warming: A Multilevel Analysis Across 40 Nations," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 128(3), pages 1273-1298, September.
    18. Minjeong Jeon & Sophia Rabe-Hesketh, 2012. "Profile-Likelihood Approach for Estimating Generalized Linear Mixed Models With Factor Structures," Journal of Educational and Behavioral Statistics, , vol. 37(4), pages 518-542, August.
    19. Daniele Fanelli, 2010. "Do Pressures to Publish Increase Scientists' Bias? An Empirical Support from US States Data," PLOS ONE, Public Library of Science, vol. 5(4), pages 1-7, April.
    20. Alexander Robitzsch, 2021. "A Comprehensive Simulation Study of Estimation Methods for the Rasch Model," Stats, MDPI, vol. 4(4), pages 1-23, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:beheco:v:26:y:2015:i:5:p:1268-1273.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/beheco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.