IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003471.html
   My bibliography  Save this article

Overexpression of Heat Shock Protein 72 Attenuates NF-κB Activation Using a Combination of Regulatory Mechanisms in Microglia

Author

Listed:
  • Patrick W Sheppard
  • Xiaoyun Sun
  • Mustafa Khammash
  • Rona G Giffard

Abstract

Overexpression of the inducible heat shock protein 70, Hsp72, has broadly cytoprotective effects and improves outcome following stroke. A full understanding of how Hsp72 protects cells against injury is elusive, though several distinct mechanisms are implicated. One mechanism is its anti-inflammatory effects. We study the effects of Hsp72 overexpression on activation of the transcription factor NF-κB in microglia combining experimentation and mathematical modeling, using TNFα to stimulate a microglial cell line stably overexpressing Hsp72. We find that Hsp72 overexpression reduces the amount of NF-κB DNA binding activity, activity of the upstream kinase IKK, and amount of IκBα inhibitor phosphorylated following TNFα application. Simulations evaluating several proposed mechanisms suggest that inhibition of IKK activation is an essential component of its regulatory activities. Unexpectedly we find that Hsp72 overexpression reduces the initial amount of the RelA/p65 NF-κB subunit in cells, contributing to the attenuated response. Neither mechanism in isolation, however, is sufficient to attenuate the response, providing evidence that Hsp72 relies upon multiple mechanisms to attenuate NF-κB activation. An additional observation from our study is that the induced expression of IκBα is altered significantly in Hsp72 expressing cells. While the mechanism responsible for this observation is not known, it points to yet another means by which Hsp72 may alter the NF-κB response. This study illustrates the multi-faceted nature of Hsp72 regulation of NF-κB activation in microglia and offers further clues to a novel mechanism by which Hsp72 may protect cells against injury.Author Summary: Inducing heat shock or overexpressing certain heat shock proteins (HSPs) is known to protect against brain injury, such as that resulting from stroke. Understanding the mechanisms underlying protection at the cellular and molecular level is a subject of intense research, as such knowledge may prove beneficial in designing future therapies. Regulation of the activation of the key inflammatory transcription factor Nuclear Factor κB (NF-κB) is believed to be one critical mechanism. However how its activation is altered by Hsp72 remains unresolved. Here we examine NF-κB signaling in microglia cells overexpressing Hsp72, combining experimentation and mathematical modeling. We show that Hsp72 affects signaling using at least two essential and distinct mechanisms: attenuation of upstream kinase (IKK) activity and reduction of steady state NF-κB protein levels. We provide numerical evidence suggesting that neither mechanism in isolation is sufficient to account for the observed signaling. Furthermore, our observations suggest an intriguing additional level of regulation of gene expression and protein synthesis of the IκBα inhibitor, which opens interesting new avenues of research. These results provide novel insight into the mechanisms by which Hsp72 may regulate inflammation and protect brain cells from injury.

Suggested Citation

  • Patrick W Sheppard & Xiaoyun Sun & Mustafa Khammash & Rona G Giffard, 2014. "Overexpression of Heat Shock Protein 72 Attenuates NF-κB Activation Using a Combination of Regulatory Mechanisms in Microglia," PLOS Computational Biology, Public Library of Science, vol. 10(2), pages 1-14, February.
  • Handle: RePEc:plo:pcbi00:1003471
    DOI: 10.1371/journal.pcbi.1003471
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003471
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003471&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003471?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.