IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0095613.html
   My bibliography  Save this article

Interpreting Frequency Responses to Dose-Conserved Pulsatile Input Signals in Simple Cell Signaling Motifs

Author

Listed:
  • Patrick A Fletcher
  • Frédérique Clément
  • Alexandre Vidal
  • Joel Tabak
  • Richard Bertram

Abstract

Many hormones are released in pulsatile patterns. This pattern can be modified, for instance by changing pulse frequency, to encode relevant physiological information. Often other properties of the pulse pattern will also change with frequency. How do signaling pathways of cells targeted by these hormones respond to different input patterns? In this study, we examine how a given dose of hormone can induce different outputs from the target system, depending on how this dose is distributed in time. We use simple mathematical models of feedforward signaling motifs to understand how the properties of the target system give rise to preferences in input pulse pattern. We frame these problems in terms of frequency responses to pulsatile inputs, where the amplitude or duration of the pulses is varied along with frequency to conserve input dose. We find that the form of the nonlinearity in the steady state input-output function of the system predicts the optimal input pattern. It does so by selecting an optimal input signal amplitude. Our results predict the behavior of common signaling motifs such as receptor binding with dimerization, and protein phosphorylation. The findings have implications for experiments aimed at studying the frequency response to pulsatile inputs, as well as for understanding how pulsatile patterns drive biological responses via feedforward signaling pathways.

Suggested Citation

  • Patrick A Fletcher & Frédérique Clément & Alexandre Vidal & Joel Tabak & Richard Bertram, 2014. "Interpreting Frequency Responses to Dose-Conserved Pulsatile Input Signals in Simple Cell Signaling Motifs," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-10, April.
  • Handle: RePEc:plo:pone00:0095613
    DOI: 10.1371/journal.pone.0095613
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0095613
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0095613&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0095613?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ricardo E. Dolmetsch & Keli Xu & Richard S. Lewis, 1998. "Calcium oscillations increase the efficiency and specificity of gene expression," Nature, Nature, vol. 392(6679), pages 933-936, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Guang & Yi, Ming & Jia, Ya & Tang, Jun, 2009. "A constructive role of internal noise on coherence resonance induced by external noise in a calcium oscillation system," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 273-283.
    2. Gabriele Micali & Gerardo Aquino & David M Richards & Robert G Endres, 2015. "Accurate Encoding and Decoding by Single Cells: Amplitude Versus Frequency Modulation," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-21, June.
    3. Andreja Jovic & Bryan Howell & Michelle Cote & Susan M Wade & Khamir Mehta & Atsushi Miyawaki & Richard R Neubig & Jennifer J Linderman & Shuichi Takayama, 2010. "Phase-Locked Signals Elucidate Circuit Architecture of an Oscillatory Pathway," PLOS Computational Biology, Public Library of Science, vol. 6(12), pages 1-8, December.
    4. Alok Maity & Roy Wollman, 2020. "Information transmission from NFkB signaling dynamics to gene expression," PLOS Computational Biology, Public Library of Science, vol. 16(8), pages 1-16, August.
    5. Sundar Srinivasan & Brandon J Ausk & Jitendra Prasad & Dewayne Threet & Steven D Bain & Thomas S Richardson & Ted S Gross, 2010. "Rescuing Loading Induced Bone Formation at Senescence," PLOS Computational Biology, Public Library of Science, vol. 6(9), pages 1-16, September.
    6. Agne Tilūnaitė & Wayne Croft & Noah Russell & Tomas C Bellamy & Rüdiger Thul, 2017. "A Bayesian approach to modelling heterogeneous calcium responses in cell populations," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-25, October.
    7. Chanu, Athokpam Langlen & Singh, R.K. Brojen & Jeon, Jae-Hyung, 2024. "Exploring the interplay of intrinsic fluctuation and complexity in intracellular calcium dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    8. Martin Rückl & Ian Parker & Jonathan S Marchant & Chamakuri Nagaiah & Friedrich W Johenning & Sten Rüdiger, 2015. "Modulation of Elementary Calcium Release Mediates a Transition from Puffs to Waves in an IP3R Cluster Model," PLOS Computational Biology, Public Library of Science, vol. 11(1), pages 1-12, January.
    9. Grant Gillary & Ernst Niebur, 2016. "The Edge of Stability: Response Times and Delta Oscillations in Balanced Networks," PLOS Computational Biology, Public Library of Science, vol. 12(9), pages 1-22, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0095613. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.