IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v185y2024ics0960077924006908.html
   My bibliography  Save this article

Exploring the interplay of intrinsic fluctuation and complexity in intracellular calcium dynamics

Author

Listed:
  • Chanu, Athokpam Langlen
  • Singh, R.K. Brojen
  • Jeon, Jae-Hyung

Abstract

The concentration of intracellular calcium ion (Ca2+) exhibits complex oscillations, including bursting and chaos, as observed experimentally. These dynamics are influenced by inherent fluctuations within cells, which serve as crucial determinants in cellular decision-making processes and fate determination. In this study, we systematically explore the interplay between intrinsic fluctuation and the complexity of various dynamic states of intracellular cytosolic Ca2+. To investigate this interplay, we employ complexity measures such as permutation entropy and statistical complexity. Using a stochastic chemical Langevin equation, we simulate the dynamics of cytosolic Ca2+. Our findings reveal that permutation entropy and statistical complexity effectively characterize the diverse, dynamic states of cytosolic Ca2+ and illustrate their interactions with intrinsic fluctuation. Permutation entropy analysis elucidates that the chaotic state is more sensitive to intrinsic fluctuation than the other periodic states. Furthermore, we identify distinct states of cytosolic Ca2+ occupying specific locations within the theoretical bounds of the complexity–entropy causality plane. These locations indicate varying complexity and information content as intrinsic fluctuation varies. When adjusting the permutation order, the statistical complexity measure for the different periodic and chaotic states exhibits peaks in an intermediate range of intrinsic fluctuation values. Additionally, we identify scale-free or fractal patterns in this intermediate range, which are further corroborated by multifractal detrended fluctuation analysis. These high-complexity states likely correspond to optimal Ca2+ dynamics with biological significance, revealing rich and complex dynamics shaped by the interplay of intrinsic fluctuation and complexity. Our investigation enhances our understanding of the intricate regulatory mechanisms governing intracellular Ca2+ dynamics and how intrinsic fluctuation modulates the complexity of the various dynamics that play crucial roles in biological cells.

Suggested Citation

  • Chanu, Athokpam Langlen & Singh, R.K. Brojen & Jeon, Jae-Hyung, 2024. "Exploring the interplay of intrinsic fluctuation and complexity in intracellular calcium dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
  • Handle: RePEc:eee:chsofr:v:185:y:2024:i:c:s0960077924006908
    DOI: 10.1016/j.chaos.2024.115138
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924006908
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115138?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicholas Smaal & José Roberto C. Piqueira & Marcelo Messias, 2021. "Complexity Measures for Maxwell–Boltzmann Distribution," Complexity, Hindawi, vol. 2021, pages 1-6, January.
    2. Ricardo E. Dolmetsch & Keli Xu & Richard S. Lewis, 1998. "Calcium oscillations increase the efficiency and specificity of gene expression," Nature, Nature, vol. 392(6679), pages 933-936, April.
    3. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    4. Martin, M.T. & Plastino, A. & Rosso, O.A., 2006. "Generalized statistical complexity measures: Geometrical and analytical properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 439-462.
    5. Ali Mehri & Sahar Mohammadpour Lashkari, 2016. "Power-law regularities in human language," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(11), pages 1-6, November.
    6. Christopher V. Rao & Denise M. Wolf & Adam P. Arkin, 2002. "Control, exploitation and tolerance of intracellular noise," Nature, Nature, vol. 420(6912), pages 231-237, November.
    7. Daniel S. Seara & Benjamin B. Machta & Michael P. Murrell, 2021. "Irreversibility in dynamical phases and transitions," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    8. Benoit Mandelbrot & Adlai Fisher & Laurent Calvet, 1997. "A Multifractal Model of Asset Returns," Cowles Foundation Discussion Papers 1164, Cowles Foundation for Research in Economics, Yale University.
    9. Yu-chi Shen & Adrienne Niederriter Shami & Lindsay Moritz & Hailey Larose & Gabriel L. Manske & Qianyi Ma & Xianing Zheng & Meena Sukhwani & Michael Czerwinski & Caleb Sultan & Haolin Chen & Stephen J, 2021. "TCF21+ mesenchymal cells contribute to testis somatic cell development, homeostasis, and regeneration in mice," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    10. Thounaojam, Umeshkanta Singh, 2022. "Stochastic chaos in chemical Lorenz system: Interplay of intrinsic noise and nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    11. Kantelhardt, Jan W & Koscielny-Bunde, Eva & Rego, Henio H.A & Havlin, Shlomo & Bunde, Armin, 2001. "Detecting long-range correlations with detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(3), pages 441-454.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhardwaj, Shivam & Chandrasekhar, E. & Seemala, Gopi K. & Gadre, Vikram M., 2020. "Characterization of ionospheric total electron content data using wavelet-based multifractal formalism," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    2. Mensi, Walid & Tiwari, Aviral Kumar & Yoon, Seong-Min, 2017. "Global financial crisis and weak-form efficiency of Islamic sectoral stock markets: An MF-DFA analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 135-146.
    3. Lavička, Hynek & Kracík, Jiří, 2020. "Fluctuation analysis of electric power loads in Europe: Correlation multifractality vs. Distribution function multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    4. Vitanov, Nikolay K. & Sakai, Kenshi & Dimitrova, Zlatinka I., 2008. "SSA, PCA, TDPSC, ACFA: Useful combination of methods for analysis of short and nonstationary time series," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 187-202.
    5. El Alaoui, Marwane & Benbachir, Saâd, 2013. "Multifractal detrended cross-correlation analysis in the MENA area," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5985-5993.
    6. Aslam, Faheem & Aziz, Saqib & Nguyen, Duc Khuong & Mughal, Khurrum S. & Khan, Maaz, 2020. "On the efficiency of foreign exchange markets in times of the COVID-19 pandemic," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    7. Laura Raisa Miloş & Cornel Haţiegan & Marius Cristian Miloş & Flavia Mirela Barna & Claudiu Boțoc, 2020. "Multifractal Detrended Fluctuation Analysis (MF-DFA) of Stock Market Indexes. Empirical Evidence from Seven Central and Eastern European Markets," Sustainability, MDPI, vol. 12(2), pages 1-15, January.
    8. Nagarajan, Radhakrishnan & Kavasseri, Rajesh G., 2005. "Minimizing the effect of trends on detrended fluctuation analysis of long-range correlated noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 182-198.
    9. Thomas Lux, 2004. "Detecting Multifractal Properties In Asset Returns: The Failure Of The "Scaling Estimator"," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 15(04), pages 481-491.
    10. Dutta, Srimonti & Ghosh, Dipak & Samanta, Shukla, 2014. "Multifractal detrended cross-correlation analysis of gold price and SENSEX," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 195-204.
    11. Chen, Wang & Wei, Yu & Lang, Qiaoqi & Lin, Yu & Liu, Maojuan, 2014. "Financial market volatility and contagion effect: A copula–multifractal volatility approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 289-300.
    12. Todd Zorick & Mark A Mandelkern, 2013. "Multifractal Detrended Fluctuation Analysis of Human EEG: Preliminary Investigation and Comparison with the Wavelet Transform Modulus Maxima Technique," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-7, July.
    13. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    14. Jiang, Lei & Zhang, Jiping & Liu, Xinwei & Li, Fei, 2016. "Multi-fractal scaling comparison of the Air Temperature and the Surface Temperature over China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 783-792.
    15. Zeng, Yayun & Wang, Jun & Xu, Kaixuan, 2017. "Complexity and multifractal behaviors of multiscale-continuum percolation financial system for Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 364-376.
    16. Onali, Enrico & Goddard, John, 2009. "Unifractality and multifractality in the Italian stock market," International Review of Financial Analysis, Elsevier, vol. 18(4), pages 154-163, September.
    17. Scarlat, E.I. & Stan, Cristina & Cristescu, C.P., 2007. "Self-similar characteristics of the currency exchange rate in an economy in transition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(1), pages 188-198.
    18. Michalski, Sebastian, 2008. "Blocks adjustment—reduction of bias and variance of detrended fluctuation analysis using Monte Carlo simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 217-242.
    19. Lee, Hojin & Chang, Woojin, 2015. "Multifractal regime detecting method for financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 70(C), pages 117-129.
    20. Jamshid Ardalankia & Mohammad Osoolian & Emmanuel Haven & G. Reza Jafari, 2019. "Scaling Features of Price-Volume Cross-Correlation," Papers 1903.01744, arXiv.org, revised Aug 2020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:185:y:2024:i:c:s0960077924006908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.