IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003965.html
   My bibliography  Save this article

Modulation of Elementary Calcium Release Mediates a Transition from Puffs to Waves in an IP3R Cluster Model

Author

Listed:
  • Martin Rückl
  • Ian Parker
  • Jonathan S Marchant
  • Chamakuri Nagaiah
  • Friedrich W Johenning
  • Sten Rüdiger

Abstract

The oscillating concentration of intracellular calcium is one of the most important examples for collective dynamics in cell biology. Localized releases of calcium through clusters of inositol 1,4,5-trisphosphate receptor channels constitute elementary signals called calcium puffs. Coupling by diffusing calcium leads to global releases and waves, but the exact mechanism of inter-cluster coupling and triggering of waves is unknown. To elucidate the relation of puffs and waves, we here model a cluster of IP3R channels using a gating scheme with variable non-equilibrium IP3 binding. Hybrid stochastic and deterministic simulations show that puffs are not stereotyped events of constant duration but are sensitive to stimulation strength and residual calcium. For increasing IP3 concentration, the release events become modulated at a timescale of minutes, with repetitive wave-like releases interspersed with several puffs. This modulation is consistent with experimental observations we present, including refractoriness and increase of puff frequency during the inter-wave interval. Our results suggest that waves are established by a random but time-modulated appearance of sustained release events, which have a high potential to trigger and synchronize activity throughout the cell.Author Summary: Intracellular calcium oscillations and waves are paramount cellular signals. The frequency of global release events regulates, for example, expression of genes. Knowledge about the mechanism of oscillations and the factors that determine their frequency is crucial when aiming at the control of downstream processes. Many experimental and modeling studies have demonstrated that a calcium cycle consists of both deterministic and stochastic components, but the respective mechanisms are under debate. Here we aim to clarify both components by analyzing calcium release in Xenopus oocytes and a computational model for a cluster of IP3 receptor channels. Just as in calcium fluorescence traces, in the computed sequences some of the events are prolonged releases lasting for several seconds. We find that synchronized unbinding and rebinding of IP3 cause this modulation in time. Our experimental and computational data show agreement in many properties including wave period, extended refractoriness, and release amplitude. Our analysis suggests that global calcium concentrations are stochastically oscillating because of a modulated but random appearance of high-release events. Thus our approach integrates both deterministic properties and stochasticity of waves, and reveals key control parameters of calcium oscillations.

Suggested Citation

  • Martin Rückl & Ian Parker & Jonathan S Marchant & Chamakuri Nagaiah & Friedrich W Johenning & Sten Rüdiger, 2015. "Modulation of Elementary Calcium Release Mediates a Transition from Puffs to Waves in an IP3R Cluster Model," PLOS Computational Biology, Public Library of Science, vol. 11(1), pages 1-12, January.
  • Handle: RePEc:plo:pcbi00:1003965
    DOI: 10.1371/journal.pcbi.1003965
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003965
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003965&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003965?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ricardo E. Dolmetsch & Keli Xu & Richard S. Lewis, 1998. "Calcium oscillations increase the efficiency and specificity of gene expression," Nature, Nature, vol. 392(6679), pages 933-936, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Friedrich W Johenning & Anne-Kathrin Theis & Ulrike Pannasch & Martin Rückl & Sten Rüdiger & Dietmar Schmitz, 2015. "Ryanodine Receptor Activation Induces Long-Term Plasticity of Spine Calcium Dynamics," PLOS Biology, Public Library of Science, vol. 13(6), pages 1-29, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Guang & Yi, Ming & Jia, Ya & Tang, Jun, 2009. "A constructive role of internal noise on coherence resonance induced by external noise in a calcium oscillation system," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 273-283.
    2. Gabriele Micali & Gerardo Aquino & David M Richards & Robert G Endres, 2015. "Accurate Encoding and Decoding by Single Cells: Amplitude Versus Frequency Modulation," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-21, June.
    3. Andreja Jovic & Bryan Howell & Michelle Cote & Susan M Wade & Khamir Mehta & Atsushi Miyawaki & Richard R Neubig & Jennifer J Linderman & Shuichi Takayama, 2010. "Phase-Locked Signals Elucidate Circuit Architecture of an Oscillatory Pathway," PLOS Computational Biology, Public Library of Science, vol. 6(12), pages 1-8, December.
    4. Alok Maity & Roy Wollman, 2020. "Information transmission from NFkB signaling dynamics to gene expression," PLOS Computational Biology, Public Library of Science, vol. 16(8), pages 1-16, August.
    5. Agne Tilūnaitė & Wayne Croft & Noah Russell & Tomas C Bellamy & Rüdiger Thul, 2017. "A Bayesian approach to modelling heterogeneous calcium responses in cell populations," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-25, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.