IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0071114.html
   My bibliography  Save this article

A Novel Support Vector Machine-Based Approach for Rare Variant Detection

Author

Listed:
  • Yao-Hwei Fang
  • Yen-Feng Chiu

Abstract

Advances in next-generation sequencing technologies have enabled the identification of multiple rare single nucleotide polymorphisms involved in diseases or traits. Several strategies for identifying rare variants that contribute to disease susceptibility have recently been proposed. An important feature of many of these statistical methods is the pooling or collapsing of multiple rare single nucleotide variants to achieve a reasonably high frequency and effect. However, if the pooled rare variants are associated with the trait in different directions, then the pooling may weaken the signal, thereby reducing its statistical power. In the present paper, we propose a backward support vector machine (BSVM)-based variant selection procedure to identify informative disease-associated rare variants. In the selection procedure, the rare variants are weighted and collapsed according to their positive or negative associations with the disease, which may be associated with common variants and rare variants with protective, deleterious, or neutral effects. This nonparametric variant selection procedure is able to account for confounding factors and can also be adopted in other regression frameworks. The results of a simulation study and a data example show that the proposed BSVM approach is more powerful than four other approaches under the considered scenarios, while maintaining valid type I errors.

Suggested Citation

  • Yao-Hwei Fang & Yen-Feng Chiu, 2013. "A Novel Support Vector Machine-Based Approach for Rare Variant Detection," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-9, August.
  • Handle: RePEc:plo:pone00:0071114
    DOI: 10.1371/journal.pone.0071114
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0071114
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0071114&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0071114?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Benjamin M Neale & Manuel A Rivas & Benjamin F Voight & David Altshuler & Bernie Devlin & Marju Orho-Melander & Sekar Kathiresan & Shaun M Purcell & Kathryn Roeder & Mark J Daly, 2011. "Testing for an Unusual Distribution of Rare Variants," PLOS Genetics, Public Library of Science, vol. 7(3), pages 1-8, March.
    2. Bo Eskerod Madsen & Sharon R Browning, 2009. "A Groupwise Association Test for Rare Mutations Using a Weighted Sum Statistic," PLOS Genetics, Public Library of Science, vol. 5(2), pages 1-11, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruixue Fan & Shaw-Hwa Lo, 2013. "A Robust Model-free Approach for Rare Variants Association Studies Incorporating Gene-Gene and Gene-Environmental Interactions," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-14, December.
    2. Wan-Yu Lin & Xiang-Yang Lou & Guimin Gao & Nianjun Liu, 2014. "Rare Variant Association Testing by Adaptive Combination of P-values," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-7, January.
    3. ChangJiang Xu & Martin Ladouceur & Zari Dastani & J Brent Richards & Antonio Ciampi & Celia M T Greenwood, 2012. "Multiple Regression Methods Show Great Potential for Rare Variant Association Tests," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-10, August.
    4. Chung-Feng Kao & Jia-Rou Liu & Hung Hung & Po-Hsiu Kuo, 2015. "A Robust GWSS Method to Simultaneously Detect Rare and Common Variants for Complex Disease," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-14, April.
    5. Elodie Persyn & Richard Redon & Lise Bellanger & Christian Dina, 2018. "The impact of a fine-scale population stratification on rare variant association test results," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-17, December.
    6. Wenjing Qi & Andrew S Allen & Yi-Ju Li, 2019. "Family-based association tests for rare variants with censored traits," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-17, January.
    7. Morgan Mayer-Jochimsen & Shannon Fast & Nathan L Tintle, 2013. "Assessing the Impact of Differential Genotyping Errors on Rare Variant Tests of Association," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-10, March.
    8. María Soler Artigas & Louise V Wain & Nick Shrine & Tricia M McKeever & UK BiLEVE & Ian Sayers & Ian P Hall & Martin D Tobin, 2017. "Targeted Sequencing of Lung Function Loci in Chronic Obstructive Pulmonary Disease Cases and Controls," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-17, January.
    9. Jaleal S Sanjak & Anthony D Long & Kevin R Thornton, 2017. "A Model of Compound Heterozygous, Loss-of-Function Alleles Is Broadly Consistent with Observations from Complex-Disease GWAS Datasets," PLOS Genetics, Public Library of Science, vol. 13(1), pages 1-30, January.
    10. Ai-Ru Hsieh & Dao-Peng Chen & Amrita Sengupta Chattopadhyay & Ying-Ju Li & Chien-Ching Chang & Cathy S J Fann, 2017. "A non-threshold region-specific method for detecting rare variants in complex diseases," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-16, November.
    11. Diana Chang & Alon Keinan, 2012. "Predicting Signatures of “Synthetic Associations” and “Natural Associations” from Empirical Patterns of Human Genetic Variation," PLOS Computational Biology, Public Library of Science, vol. 8(7), pages 1-9, July.
    12. Nanye Long & Samuel P Dickson & Jessica M Maia & Hee Shin Kim & Qianqian Zhu & Andrew S Allen, 2013. "Leveraging Prior Information to Detect Causal Variants via Multi-Variant Regression," PLOS Computational Biology, Public Library of Science, vol. 9(6), pages 1-11, June.
    13. Xinge Jessie Jeng & Zhongyin John Daye & Wenbin Lu & Jung-Ying Tzeng, 2016. "Rare Variants Association Analysis in Large-Scale Sequencing Studies at the Single Locus Level," PLOS Computational Biology, Public Library of Science, vol. 12(6), pages 1-23, June.
    14. Weihua Guan & Chun Li, 2014. "Design of DNA Pooling to Allow Incorporation of Covariates in Rare Variants Analysis," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-16, December.
    15. Wan-Yu Lin, 2014. "Adaptive Combination of P-Values for Family-Based Association Testing with Sequence Data," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-16, December.
    16. Silviu-Alin Bacanu & Matthew R Nelson & John C Whittaker, 2012. "Comparison of Statistical Tests for Association between Rare Variants and Binary Traits," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-7, August.
    17. Gaurav Bhatia & Vikas Bansal & Olivier Harismendy & Nicholas J Schork & Eric J Topol & Kelly Frazer & Vineet Bafna, 2010. "A Covering Method for Detecting Genetic Associations between Rare Variants and Common Phenotypes," PLOS Computational Biology, Public Library of Science, vol. 6(10), pages 1-12, October.
    18. Cameron Palmer & Itsik Pe’er, 2016. "Bias Characterization in Probabilistic Genotype Data and Improved Signal Detection with Multiple Imputation," PLOS Genetics, Public Library of Science, vol. 12(6), pages 1-17, June.
    19. Yukinori Okada & Dorothee Diogo & Jeffrey D Greenberg & Faten Mouassess & Walid A L Achkar & Robert S Fulton & Joshua C Denny & Namrata Gupta & Daniel Mirel & Stacy Gabriel & Gang Li & Joel M Kremer &, 2014. "Integration of Sequence Data from a Consanguineous Family with Genetic Data from an Outbred Population Identifies PLB1 as a Candidate Rheumatoid Arthritis Risk Gene," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-12, February.
    20. Ren-Hua Chung & Wei-Yun Tsai & Eden R Martin, 2014. "Family-Based Association Test Using Both Common and Rare Variants and Accounting for Directions of Effects for Sequencing Data," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-7, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0071114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.