IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0065291.html
   My bibliography  Save this article

Bifactor Item Response Theory Model of Acute Stress Response

Author

Listed:
  • Yebing Yang
  • Yunfeng Sun
  • Ying Zhang
  • Yuan Jiang
  • Jingjing Tang
  • Xia Zhu
  • Danmin Miao

Abstract

Background: Better understanding of acute stress responses is important for revision of DSM-5. However, the latent structure and relationship between different aspects of acute stress responses haven’t been clarified comprehensively. Bifactor item response model may help resolve this problem. Objective: The purpose of this study is to develop a statistical model of acute stress responses, based on data from earthquake rescuers using Acute Stress Response Scale (ASRS). Through this model, we could better understand acute stress responses comprehensively, and provide preliminary information for computerized adaptive testing of stress responses. Methods: Acute stress responses of earthquake rescuers were evaluated using ASRS, and state/trait anxiety were assessed using State-trait Anxiety Inventory (STAI). A hierarchical item response model (bifactor model) was used to analyze the data. Additionally, we tested this hierarchical model with model fit comparisons with one-dimensional and five-dimensional models. The correlations among acute stress responses and state/trait anxiety were compared, based on both the five-dimensional and bifactor models. Results: Model fit comparisons showed bifactor model fit the data best. Item loadings on general and specific factors varied greatly between different aspects of stress responses. Many symptoms (40%) of physiological responses had positive loadings on general factor, and negative loadings on specific factor of physiological responses, while other stress responses had positive loadings on both general and specific factors. After extracting general factor of stress responses using bifactor analysis, significant positive correlations between physiological responses and state/trait anxiety (r = 0.185/0.112, p

Suggested Citation

  • Yebing Yang & Yunfeng Sun & Ying Zhang & Yuan Jiang & Jingjing Tang & Xia Zhu & Danmin Miao, 2013. "Bifactor Item Response Theory Model of Acute Stress Response," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-10, June.
  • Handle: RePEc:plo:pone00:0065291
    DOI: 10.1371/journal.pone.0065291
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0065291
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0065291&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0065291?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robert Gibbons & Donald Hedeker, 1992. "Full-information item bi-factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 57(3), pages 423-436, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nana Kim & Daniel M. Bolt & James Wollack, 2022. "Noncompensatory MIRT For Passage-Based Tests," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 992-1009, September.
    2. Vassilis Vasdekis & Silvia Cagnone & Irini Moustaki, 2012. "A Composite Likelihood Inference in Latent Variable Models for Ordinal Longitudinal Responses," Psychometrika, Springer;The Psychometric Society, vol. 77(3), pages 425-441, July.
    3. Edward Ip & Yuchung Wang & Paul Boeck & Michel Meulders, 2004. "Locally dependent latent trait model for polytomous responses with application to inventory of hostility," Psychometrika, Springer;The Psychometric Society, vol. 69(2), pages 191-216, June.
    4. Aristidis Nikoloulopoulos & Harry Joe, 2015. "Factor Copula Models for Item Response Data," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 126-150, March.
    5. Victoria T. Tanaka & George Engelhard & Matthew P. Rabbitt, 2020. "Using a Bifactor Model to Measure Food Insecurity in Households with Children," Journal of Family and Economic Issues, Springer, vol. 41(3), pages 492-504, September.
    6. Jean-Paul Fox & Cees Glas, 2001. "Bayesian estimation of a multilevel IRT model using gibbs sampling," Psychometrika, Springer;The Psychometric Society, vol. 66(2), pages 271-288, June.
    7. Chun Wang & Steven W. Nydick, 2020. "On Longitudinal Item Response Theory Models: A Didactic," Journal of Educational and Behavioral Statistics, , vol. 45(3), pages 339-368, June.
    8. C. Glas & Anna Dagohoy, 2007. "A Person Fit Test For Irt Models For Polytomous Items," Psychometrika, Springer;The Psychometric Society, vol. 72(2), pages 159-180, June.
    9. Michael Edwards, 2010. "A Markov Chain Monte Carlo Approach to Confirmatory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 75(3), pages 474-497, September.
    10. Laine Bradshaw & Jonathan Templin, 2014. "Combining Item Response Theory and Diagnostic Classification Models: A Psychometric Model for Scaling Ability and Diagnosing Misconceptions," Psychometrika, Springer;The Psychometric Society, vol. 79(3), pages 403-425, July.
    11. Sijia Huang & Li Cai, 2021. "Lord–Wingersky Algorithm Version 2.5 with Applications," Psychometrika, Springer;The Psychometric Society, vol. 86(4), pages 973-993, December.
    12. Johan Braeken, 2011. "A Boundary Mixture Approach to Violations of Conditional Independence," Psychometrika, Springer;The Psychometric Society, vol. 76(1), pages 57-76, January.
    13. Gregory Camilli & Jean-Paul Fox, 2015. "An Aggregate IRT Procedure for Exploratory Factor Analysis," Journal of Educational and Behavioral Statistics, , vol. 40(4), pages 377-401, August.
    14. Michela Gnaldi & Silvia Bacci & Thiemo Kunze & Samuel Greiff, 2020. "Students’ Complex Problem Solving Profiles," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 469-501, June.
    15. Andreas Oranje & Andrew Kolstad, 2019. "Research on Psychometric Modeling, Analysis, and Reporting of the National Assessment of Educational Progress," Journal of Educational and Behavioral Statistics, , vol. 44(6), pages 648-670, December.
    16. Minjeong Jeon & Sophia Rabe-Hesketh, 2012. "Profile-Likelihood Approach for Estimating Generalized Linear Mixed Models With Factor Structures," Journal of Educational and Behavioral Statistics, , vol. 37(4), pages 518-542, August.
    17. Yunxiao Chen & Xiaoou Li & Jingchen Liu & Zhiliang Ying, 2018. "Robust Measurement via A Fused Latent and Graphical Item Response Theory Model," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 538-562, September.
    18. Minjeong Jeon & Frank Rijmen & Sophia Rabe-Hesketh, 2013. "Modeling Differential Item Functioning Using a Generalization of the Multiple-Group Bifactor Model," Journal of Educational and Behavioral Statistics, , vol. 38(1), pages 32-60, February.
    19. Nicholas J. Rockwood, 2020. "Maximum Likelihood Estimation of Multilevel Structural Equation Models with Random Slopes for Latent Covariates," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 275-300, June.
    20. Scott Monroe, 2019. "Estimation of Expected Fisher Information for IRT Models," Journal of Educational and Behavioral Statistics, , vol. 44(4), pages 431-447, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0065291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.