IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/61644.html
   My bibliography  Save this paper

Relation between financial market structure and the real economy: comparison between clustering methods

Author

Listed:
  • Musmeci, Nicoló
  • Aste, Tomaso
  • Di Matteo, T.

Abstract

We quantify the amount of information filtered by different hierarchical clustering methods on correlations between stock returns comparing the clustering structure with the underlying industrial activity classification. We apply, for the first time to financial data, a novel hierarchical clustering approach, the Directed Bubble Hierarchical Tree and we compare it with other methods including the Linkage and k-medoids. By taking the industrial sector classification of stocks as a benchmark partition, we evaluate how the different methods retrieve this classification. The results show that the Directed Bubble Hierarchical Tree can outperform other methods, being able to retrieve more information with fewer clusters. Moreover, we show that the economic information is hidden at different levels of the hierarchical structures depending on the clustering method. The dynamical analysis on a rolling window also reveals that the different methods show different degrees of sensitivity to events affecting financial markets, like crises. These results can be of interest for all the applications of clustering methods to portfolio optimization and risk hedging

Suggested Citation

  • Musmeci, Nicoló & Aste, Tomaso & Di Matteo, T., 2015. "Relation between financial market structure and the real economy: comparison between clustering methods," LSE Research Online Documents on Economics 61644, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:61644
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/61644/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Onnela, J.-P. & Chakraborti, A. & Kaski, K. & Kertész, J., 2003. "Dynamic asset trees and Black Monday," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 247-252.
    2. Christian Borghesi & Matteo Marsili & Salvatore Miccich`e, 2007. "Emergence of time-horizon invariant correlation structure in financial returns by subtraction of the market mode," Papers physics/0702106, arXiv.org.
    3. Daniel J. Fenn & Mason A. Porter & Peter J. Mucha & Mark McDonald & Stacy Williams & Neil F. Johnson & Nick S. Jones, 2012. "Dynamical clustering of exchange rates," Quantitative Finance, Taylor & Francis Journals, vol. 12(10), pages 1493-1520, October.
    4. Di Matteo, T. & Aste, T. & Mantegna, R.N., 2004. "An interest rates cluster analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 339(1), pages 181-188.
    5. M. Tumminello & T. Di Matteo & T. Aste & R. N. Mantegna, 2007. "Correlation based networks of equity returns sampled at different time horizons," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 55(2), pages 209-217, January.
    6. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    7. F. Pozzi & T. Matteo & T. Aste, 2012. "Exponential smoothing weighted correlations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 85(6), pages 1-21, June.
    8. Michele Tumminello & Salvatore Miccichè & Fabrizio Lillo & Jyrki Piilo & Rosario N Mantegna, 2011. "Statistically Validated Networks in Bipartite Complex Systems," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-11, March.
    9. Pawe{l} Fiedor, 2014. "Mutual Information Rate-Based Networks in Financial Markets," Papers 1401.2548, arXiv.org.
    10. Morales, Raffaello & Di Matteo, T. & Aste, Tomaso, 2014. "Dependency structure and scaling properties of financial time series are related," LSE Research Online Documents on Economics 56622, London School of Economics and Political Science, LSE Library.
    11. Di Matteo, T. & Aste, T. & Hyde, S.T. & Ramsden, S., 2005. "Interest rates hierarchical structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 21-33.
    12. Tola, Vincenzo & Lillo, Fabrizio & Gallegati, Mauro & Mantegna, Rosario N., 2008. "Cluster analysis for portfolio optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 235-258, January.
    13. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    14. M. Bartolozzi & C. Mellen & T. Di Matteo & T. Aste, 2007. "Multi-scale correlations in different futures markets," Papers 0707.3321, arXiv.org, revised Aug 2007.
    15. T. Di Matteo & F. Pozzi & T. Aste, 2010. "The use of dynamical networks to detect the hierarchical organization of financial market sectors," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 73(1), pages 3-11, January.
    16. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    17. M. Bartolozzi & C. Mellen & T. Di Matteo & T. Aste, 2007. "Multi-scale correlations in different futures markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 58(2), pages 207-220, July.
    18. Tumminello, Michele & Lillo, Fabrizio & Mantegna, Rosario N., 2010. "Correlation, hierarchies, and networks in financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 75(1), pages 40-58, July.
    19. Aste, T. & Di Matteo, T. & Hyde, S.T., 2005. "Complex networks on hyperbolic surfaces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 346(1), pages 20-26.
    20. Michele Tumminello & Fabrizio Lillo & Rosario Nunzio Mantegna, 2007. "Kullback-Leibler distance as a measure of the information filtered from multivariate data," Papers 0706.0168, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenpin Tang & Xiao Xu & Xun Yu Zhou, 2021. "Asset Selection via Correlation Blockmodel Clustering," Papers 2103.14506, arXiv.org, revised Aug 2021.
    2. Gloria Polinesi & Maria Cristina Recchioni, 2021. "Filtered clustering for exchange traded fund," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - The Italian Journal of Economic, Demographic and Statistical Studies, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 75(1), pages 125-135, January-M.
    3. Anshul Verma & Orazio Angelini & Tiziana Di Matteo, 2019. "A new set of cluster driven composite development indicators," Papers 1911.11226, arXiv.org, revised Mar 2020.
    4. Pang, Raymond Ka-Kay & Granados, Oscar M. & Chhajer, Harsh & Legara, Erika Fille T., 2021. "An analysis of network filtering methods to sovereign bond yields during COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    5. James Ming Chen & Mira Zovko & Nika Šimurina & Vatroslav Zovko, 2021. "Fear in a Handful of Dust: The Epidemiological, Environmental, and Economic Drivers of Death by PM 2.5 Pollution," IJERPH, MDPI, vol. 18(16), pages 1-59, August.
    6. Yong Tang & Jason Jie Xiong & Zi-Yang Jia & Yi-Cheng Zhang, 2018. "Complexities in Financial Network Topological Dynamics: Modeling of Emerging and Developed Stock Markets," Complexity, Hindawi, vol. 2018, pages 1-31, November.
    7. Esmalifalak, Hamidreza, 2022. "Euclidean (dis)similarity in financial network analysis," Global Finance Journal, Elsevier, vol. 53(C).
    8. Kong, Xiaolin & Ma, Chaoqun & Ren, Yi-Shuai & Narayan, Seema & Nguyen, Thong Trung & Baltas, Konstantinos, 2023. "Changes in the market structure and risk management of Bitcoin and its forked coins," Research in International Business and Finance, Elsevier, vol. 65(C).
    9. Nicol'o Musmeci & Tomaso Aste & Tiziana Di Matteo, 2016. "What does past correlation structure tell us about the future? An answer from network filtering," Papers 1605.08908, arXiv.org.
    10. Tianyu Cui & Francesco Caravelli & Cozmin Ududec, 2017. "Correlations and Clustering in Wholesale Electricity Markets," Papers 1710.11184, arXiv.org, revised Nov 2017.
    11. Donglian Ma & Hisashi Tanizaki, 2022. "Intraday patterns of price clustering in Bitcoin," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-25, December.
    12. James Ming Chen & Mobeen Ur Rehman, 2021. "A Pattern New in Every Moment: The Temporal Clustering of Markets for Crude Oil, Refined Fuels, and Other Commodities," Energies, MDPI, vol. 14(19), pages 1-58, September.
    13. Chen, James Ming & Rehman, Mobeen Ur & Vo, Xuan Vinh, 2021. "Clustering commodity markets in space and time: Clarifying returns, volatility, and trading regimes through unsupervised machine learning," Resources Policy, Elsevier, vol. 73(C).
    14. Musmeci, Nicoló & Nicosia, Vincenzo & Aste, Tomaso & Di Matteo, Tiziana & Latora, Vito, 2017. "The multiplex dependency structure of financial markets," LSE Research Online Documents on Economics 85337, London School of Economics and Political Science, LSE Library.
    15. Anshul Verma & Riccardo Junior Buonocore & Tiziana di Matteo, 2017. "A cluster driven log-volatility factor model: a deepening on the source of the volatility clustering," Papers 1712.02138, arXiv.org, revised May 2018.
    16. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    17. Mitja Steinbacher & Matthias Raddant & Fariba Karimi & Eva Camacho Cuena & Simone Alfarano & Giulia Iori & Thomas Lux, 2021. "Advances in the agent-based modeling of economic and social behavior," SN Business & Economics, Springer, vol. 1(7), pages 1-24, July.
    18. M. Raddant & T. Di Matteo, 2023. "A look at financial dependencies by means of econophysics and financial economics," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 18(4), pages 701-734, October.
    19. Wajid Alim & Naqib Ullah Khan & Vince Wanhao Zhang & Helen Huifen Cai & Alexey Mikhaylov & Qiong Yuan, 2024. "Influence of political stability on the stock market returns and volatility: GARCH and EGARCH approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-17, December.
    20. Nava, Noemi & Di Matteo, T. & Aste, Tomaso, 2018. "Dynamic correlations at different time-scales with empirical mode decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 534-544.
    21. Nicolò Musmeci & Vincenzo Nicosia & Tomaso Aste & Tiziana Di Matteo & Vito Latora, 2017. "The Multiplex Dependency Structure of Financial Markets," Complexity, Hindawi, vol. 2017, pages 1-13, September.
    22. Raymond Ka-Kay Pang & Oscar Granados & Harsh Chhajer & Erika Fille Legara, 2020. "An analysis of network filtering methods to sovereign bond yields during COVID-19," Papers 2009.13390, arXiv.org, revised Feb 2021.
    23. Millington, Tristan & Niranjan, Mahesan, 2021. "Stability and similarity in financial networks—How do they change in times of turbulence?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    24. Kaizheng Wang & Xiao Xu & Xun Yu Zhou, 2022. "Variable Clustering via Distributionally Robust Nodewise Regression," Papers 2212.07944, arXiv.org, revised Dec 2022.
    25. Sieds, 2021. "Complete Volume LXXV n. 1 2021," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - The Italian Journal of Economic, Demographic and Statistical Studies, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 75(1), pages 1-138, January-M.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicoló Musmeci & Tomaso Aste & T Di Matteo, 2015. "Relation between Financial Market Structure and the Real Economy: Comparison between Clustering Methods," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-24, March.
    2. Nicolo Musmeci & Tomaso Aste & Tiziana Di Matteo, 2014. "Relation between Financial Market Structure and the Real Economy: Comparison between Clustering Methods," Papers 1406.0496, arXiv.org, revised Jan 2015.
    3. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    4. Nicol'o Musmeci & Tomaso Aste & Tiziana Di Matteo, 2014. "Risk diversification: a study of persistence with a filtered correlation-network approach," Papers 1410.5621, arXiv.org.
    5. Sensoy, Ahmet & Tabak, Benjamin M., 2014. "Dynamic spanning trees in stock market networks: The case of Asia-Pacific," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 387-402.
    6. Nicolò Musmeci & Vincenzo Nicosia & Tomaso Aste & Tiziana Di Matteo & Vito Latora, 2017. "The Multiplex Dependency Structure of Financial Markets," Complexity, Hindawi, vol. 2017, pages 1-13, September.
    7. M. Raddant & T. Di Matteo, 2023. "A look at financial dependencies by means of econophysics and financial economics," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 18(4), pages 701-734, October.
    8. Musmeci, Nicoló & Nicosia, Vincenzo & Aste, Tomaso & Di Matteo, Tiziana & Latora, Vito, 2017. "The multiplex dependency structure of financial markets," LSE Research Online Documents on Economics 85337, London School of Economics and Political Science, LSE Library.
    9. Sandoval, Leonidas & Franca, Italo De Paula, 2012. "Correlation of financial markets in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 187-208.
    10. Pang, Raymond Ka-Kay & Granados, Oscar M. & Chhajer, Harsh & Legara, Erika Fille T., 2021. "An analysis of network filtering methods to sovereign bond yields during COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    11. Millington, Tristan & Niranjan, Mahesan, 2021. "Construction of minimum spanning trees from financial returns using rank correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    12. Leonidas Sandoval Junior & Italo De Paula Franca, 2011. "Correlation of financial markets in times of crisis," Papers 1102.1339, arXiv.org, revised Mar 2011.
    13. Zhang, Yiting & Lee, Gladys Hui Ting & Wong, Jian Cheng & Kok, Jun Liang & Prusty, Manamohan & Cheong, Siew Ann, 2011. "Will the US economy recover in 2010? A minimal spanning tree study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2020-2050.
    14. Huang, Wei-Qiang & Yao, Shuang & Zhuang, Xin-Tian & Yuan, Ying, 2017. "Dynamic asset trees in the US stock market: Structure variation and market phenomena," Chaos, Solitons & Fractals, Elsevier, vol. 94(C), pages 44-53.
    15. Sebastiano Michele Zema & Giorgio Fagiolo & Tiziano Squartini & Diego Garlaschelli, 2021. "Mesoscopic Structure of the Stock Market and Portfolio Optimization," Papers 2112.06544, arXiv.org.
    16. Teh, Boon Kin & Goo, Yik Wen & Lian, Tong Wei & Ong, Wei Guang & Choi, Wen Ting & Damodaran, Mridula & Cheong, Siew Ann, 2015. "The Chinese Correction of February 2007: How financial hierarchies change in a market crash," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 225-241.
    17. Giuseppe Brandi & Ruggero Gramatica & Tiziana Di Matteo, 2019. "Unveil stock correlation via a new tensor-based decomposition method," Papers 1911.06126, arXiv.org, revised Apr 2020.
    18. Chester Curme & Michele Tumminello & Rosario N. Mantegna & H. Eugene Stanley & Dror Y. Kenett, 2015. "Emergence of statistically validated financial intraday lead-lag relationships," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1375-1386, August.
    19. Leonidas Sandoval Junior, 2011. "A Map of the Brazilian Stock Market," Papers 1107.4146, arXiv.org, revised Mar 2013.
    20. Nicol'o Musmeci & Tomaso Aste & Tiziana Di Matteo, 2016. "What does past correlation structure tell us about the future? An answer from network filtering," Papers 1605.08908, arXiv.org.

    More about this item

    JEL classification:

    • F3 - International Economics - - International Finance
    • G3 - Financial Economics - - Corporate Finance and Governance

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:61644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.