IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0020622.html
   My bibliography  Save this article

Assessing the Utility of Thermodynamic Features for microRNA Target Prediction under Relaxed Seed and No Conservation Requirements

Author

Listed:
  • Parawee Lekprasert
  • Michael Mayhew
  • Uwe Ohler

Abstract

Background: Many computational microRNA target prediction tools are focused on several key features, including complementarity to 5′seed of miRNAs and evolutionary conservation. While these features allow for successful target identification, not all miRNA target sites are conserved and adhere to canonical seed complementarity. Several studies have propagated the use of energy features of mRNA:miRNA duplexes as an alternative feature. However, different independent evaluations reported conflicting results on the reliability of energy-based predictions. Here, we reassess the usefulness of energy features for mammalian target prediction, aiming to relax or eliminate the need for perfect seed matches and conservation requirement. Methodology/Principal Findings: We detect significant differences of energy features at experimentally supported human miRNA target sites and at genome-wide sites of AGO protein interaction. This trend is confirmed on datasets that assay the effect of miRNAs on mRNA and protein expression changes, and a simple linear regression model leads to significant correlation of predicted versus observed expression change. Compared to 6-mer seed matches as baseline, application of our energy-based model leads to ∼3–5-fold enrichment on highly down-regulated targets, and allows for prediction of strictly imperfect targets with enrichment above baseline. Conclusions/Significance: In conclusion, our results indicate significant promise for energy-based miRNA target prediction that includes a broader range of targets without having to use conservation or impose stringent seed match rules.

Suggested Citation

  • Parawee Lekprasert & Michael Mayhew & Uwe Ohler, 2011. "Assessing the Utility of Thermodynamic Features for microRNA Target Prediction under Relaxed Seed and No Conservation Requirements," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-13, June.
  • Handle: RePEc:plo:pone00:0020622
    DOI: 10.1371/journal.pone.0020622
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0020622
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0020622&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0020622?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yong Zhao & Eva Samal & Deepak Srivastava, 2005. "Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis," Nature, Nature, vol. 436(7048), pages 214-220, July.
    2. Matthias Selbach & Björn Schwanhäusser & Nadine Thierfelder & Zhuo Fang & Raya Khanin & Nikolaus Rajewsky, 2008. "Widespread changes in protein synthesis induced by microRNAs," Nature, Nature, vol. 455(7209), pages 58-63, September.
    3. Daehyun Baek & Judit Villén & Chanseok Shin & Fernando D. Camargo & Steven P. Gygi & David P. Bartel, 2008. "The impact of microRNAs on protein output," Nature, Nature, vol. 455(7209), pages 64-71, September.
    4. Kevin Chen & Jonas Maaskola & Mark L Siegal & Nikolaus Rajewsky, 2009. "Reexamining microRNA Site Accessibility in Drosophila: A Population Genomics Study," PLOS ONE, Public Library of Science, vol. 4(5), pages 1-5, May.
    5. Eva Gottwein & Neelanjan Mukherjee & Christoph Sachse & Corina Frenzel & William H. Majoros & Jen-Tsan A. Chi & Ravi Braich & Muthiah Manoharan & Jürgen Soutschek & Uwe Ohler & Bryan R. Cullen, 2007. "A viral microRNA functions as an orthologue of cellular miR-155," Nature, Nature, vol. 450(7172), pages 1096-1099, December.
    6. Brenda J. Reinhart & Frank J. Slack & Michael Basson & Amy E. Pasquinelli & Jill C. Bettinger & Ann E. Rougvie & H. Robert Horvitz & Gary Ruvkun, 2000. "The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans," Nature, Nature, vol. 403(6772), pages 901-906, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chikako Ragan & Michael Zuker & Mark A Ragan, 2011. "Quantitative Prediction of miRNA-mRNA Interaction Based on Equilibrium Concentrations," PLOS Computational Biology, Public Library of Science, vol. 7(2), pages 1-11, February.
    2. Ray M Marín & Jiří Vaníček, 2012. "Optimal Use of Conservation and Accessibility Filters in MicroRNA Target Prediction," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-11, February.
    3. Alicia Hurtado & Irene Mota-Gómez & Miguel Lao & Francisca M. Real & Johanna Jedamzick & Miguel Burgos & Darío G. Lupiáñez & Rafael Jiménez & Francisco J. Barrionuevo, 2024. "Complete male-to-female sex reversal in XY mice lacking the miR-17~92 cluster," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Adam A Margolin & Shao-En Ong & Monica Schenone & Robert Gould & Stuart L Schreiber & Steven A Carr & Todd R Golub, 2009. "Empirical Bayes Analysis of Quantitative Proteomics Experiments," PLOS ONE, Public Library of Science, vol. 4(10), pages 1-15, October.
    5. Wenliang Zhu & Xuan Kan, 2014. "Neural Network Cascade Optimizes MicroRNA Biomarker Selection for Nasopharyngeal Cancer Prognosis," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-7, October.
    6. Yuheng Lu & Christina S Leslie, 2016. "Learning to Predict miRNA-mRNA Interactions from AGO CLIP Sequencing and CLASH Data," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-18, July.
    7. Zhdanov, Vladimir P., 2010. "ncRNA-mediated bistability in the synthesis of hundreds of distinct mRNAs and proteins," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(4), pages 887-890.
    8. Youjia Hua & Shiwei Duan & Andrea E Murmann & Niels Larsen & Jørgen Kjems & Anders H Lund & Marcus E Peter, 2011. "miRConnect: Identifying Effector Genes of miRNAs and miRNA Families in Cancer Cells," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-16, October.
    9. Yasemin Oztemur & Tufan Bekmez & Alp Aydos & Isik G Yulug & Betul Bozkurt & Bala Gur Dedeoglu, 2015. "A Ranking-Based Meta-Analysis Reveals Let-7 Family as a Meta-Signature for Grade Classification in Breast Cancer," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-16, May.
    10. David Lyon & Maria Angeles Castillejo & Christiana Staudinger & Wolfram Weckwerth & Stefanie Wienkoop & Volker Egelhofer, 2014. "Automated Protein Turnover Calculations from 15N Partial Metabolic Labeling LC/MS Shotgun Proteomics Data," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-10, April.
    11. T.V., Binil Shyam & Sharma, Rati, 2024. "mRNA translation from a unidirectional traffic perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    12. Akiko Doi & Gianmarco D. Suarez & Rita Droste & H. Robert Horvitz, 2023. "A DEAD-box helicase drives the partitioning of a pro-differentiation NAB protein into nuclear foci," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Wenshu Zeng & Lu Yue & Kim S. W. Lam & Wenxin Zhang & Wai-Kin So & Erin H. Y. Tse & Tom H. Cheung, 2022. "CPEB1 directs muscle stem cell activation by reprogramming the translational landscape," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    14. W.L. Bai & Y.L. Dang & R.H. Yin & R.L. Yin & W.Q. Jiang & Z.Y. Wang & Y.B. Zhu & J.J. Wang & Z.H. Zhao & G.B. Luo, 2016. "Combination of let-7d-5p, miR-26a-5p, and miR-15a-5p is suitable normalizer for studying microRNA expression in skin tissue of Liaoning cashmere goat during hair follicle cycle," Czech Journal of Animal Science, Czech Academy of Agricultural Sciences, vol. 61(3), pages 99-107.
    15. Peng Wang & Shangwei Ning & Qianghu Wang & Ronghong Li & Jingrun Ye & Zuxianglan Zhao & Yan Li & Teng Huang & Xia Li, 2013. "mirTarPri: Improved Prioritization of MicroRNA Targets through Incorporation of Functional Genomics Data," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-12, January.
    16. E. Juszczuk-Kubiak & K. Wicińska & J. Oprządek, 2013. "Association of novel polymorphisms in the bovine myocyte enhancer factor 2D (MEF2D) gene with carcass traits of Polish Holstein-Friesian cattle," Czech Journal of Animal Science, Czech Academy of Agricultural Sciences, vol. 58(6), pages 262-269.
    17. Panagiotis Alexiou & Manolis Maragkakis & Giorgio L Papadopoulos & Victor A Simmosis & Lin Zhang & Artemis G Hatzigeorgiou, 2010. "The DIANA-mirExTra Web Server: From Gene Expression Data to MicroRNA Function," PLOS ONE, Public Library of Science, vol. 5(2), pages 1-7, February.
    18. Ramkrishna Mitra & Sanghamitra Bandyopadhyay, 2011. "MultiMiTar: A Novel Multi Objective Optimization based miRNA-Target Prediction Method," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-13, September.
    19. Evangelia Lekka & Aleksandra Kokanovic & Simone Mosole & Gianluca Civenni & Sandro Schmidli & Artur Laski & Alice Ghidini & Pavithra Iyer & Christian Berk & Alok Behera & Carlo V. Catapano & Jonathan , 2022. "Pharmacological inhibition of Lin28 promotes ketogenesis and restores lipid homeostasis in models of non-alcoholic fatty liver disease," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    20. Thuc Duy Le & Junpeng Zhang & Lin Liu & Jiuyong Li, 2015. "Ensemble Methods for MiRNA Target Prediction from Expression Data," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-19, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0020622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.